ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We have discovered and analysed two novel, linear extrachromosomal double-stranded RNAs (dsRNAs) within oocysts of major north Amercian isolates of Cryptosporidium parvum, a parasitic protozoan that infects the gastrointestinal tract of a variety of mammals, including humans. These dsRNAs were found to reside within the cytoplasm of sporozoites, and were not detected in other species of the genus. cDNAs representing both dsRNA genomes were cloned and sequenced, 1786 and 1374 nt, and each encoded one large open reading frame (ORF). The deduced protein sequence of the larger dsRNA (L-dsRNA) had homology with viral RNA-dependent RNA polymerases (RDRP), with more similarity to polymerases from fungi than those from other protozoa. The deduced protein sequence from the smaller dsRNA (S-dsRNA) had limited similarity with mitogen-activated c-June NH2 terminal protein kinases (JNK) from mammalian cells. Attempts to visually identify or purify virus-like particles associated with the dsRNAs were unsuccessful. Sensitivity of the dsRNAs to RNase A also suggests that the dsRNAs may be unencapsidated. A RDRP activity was identified in crude extracts from C. parvum sporozoites and products of RNA polymerase activity derived in vitro were similar to the dsRNAs purified directly from the parasites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The role of host factors in regulating bacterial transposition has never been comprehensively addressed, despite the potential consequences of transposition. Here, we describe a screen for host factors that influence transposition of IS903, and the effect of these mutations on two additional transposons, Tn10 and Tn552. Over 20 000 independent insertion mutants were screened in two strains of Escherichia coli; from these we isolated over 100 mutants that altered IS903 transposition. These included mutations that increased or decreased the extent of transposition and also altered the timing of transposition during colony growth. The large number of gene products affecting transposition, and their diverse functions, indicate that the overall process of transposition is modulated at many different steps and by a range of processes. Previous work has suggested that transposition is triggered by cellular stress. We describe two independent mutations that are in a gene required for fermentative metabolism during anaerobic growth, and that cause transposition to occur earlier than normal during colony development. The ability to suppress this phenotype by the addition of fumarate therefore provides direct evidence that transposition occurs in response to nutritional stress. Other mutations that altered transposition disrupted genes normally associated with DNA metabolism, intermediary metabolism, transport, cellular redox, protein folding and proteolysis and together these define a network of host proteins that could potentially allow readout of the cell's environmental and nutritional status. In summary, this work identifies a collection of proteins that allow the host to modulate transposition in response to cell stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Nucleoid proteins are small, abundant, DNA-binding proteins that profoundly affect the local and global structure of the chromosome, and play a major role in gene regulation. Although several of these proteins have been shown to enhance assembly of transpososomes before initiating transposition, no systematic survey has been carried out examining the in vivo role(s) of these proteins in transposition. We have examined the requirement of the six most abundant nucleoid proteins in transposition for three different transposons, IS903, Tn10 and Tn552. Most notably, H-NS was required for efficient transposition of all three elements in a papillation assay, suggesting a general role for H-NS in bacterial transposition. Further studies indicated that H-NS was exerting its effect on target capture. Targeting preferences for IS903 into the Escherichia coli chromosome were dramatically altered in the absence of H-NS. In addition, the alterations observed in the IS903 target profile emphasized the important role that H-NS plays in chromosome organization. A defect in target capture was also inferred for Tn10, as an excised transposon fragment, a precursor to target capture, accumulated in in vivo induction assays. Furthermore, a transposase mutant that is known to increase target DNA bending and to relax target specificity eliminated this block to target capture. Together, these results imply a role for H-NS in target capture, either by providing regions of DNA more accessible to transposition or by stabilizing transpososome binding to captured targets immediately before strand transfer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Classical conjugal DNA transfer of chromosomal DNA in bacteria requires the presence of a cis-acting site, oriT, in the chromosome. Acquisition of an oriT occurs if a conjugative plasmid integrates into the chromosome to form an Hfr donor strain, which can transfer extensive regions of chromosomal DNA. Because oriT sequences are unique, and because transfer occurs in a 5′ to 3′ direction, the frequency with which a particular gene is inherited by the recipient depends on the gene's location: those closest to the 3′ side of oriT are transferred most efficiently. In addition, as the entire chromosome must be transferred to regenerate oriT, Hfr transconjugants never become donors. Here we describe novel aspects of a chromosomal DNA transfer system in Mycobacterium smegmatis. We demonstrate that there are multiple transfer initiations from a donor chromosome and, as a result, the inheritance of any gene is location-independent. Transfer is not contiguous; instead, multiple non-linked segments of DNA can be inherited in a recipient. However, we show that, with appropriate selection, segments of DNA at least 266 kb in length can be transferred. In further contrast to Hfr transfer, transconjugants can become donors, suggesting that the recipient chromosome contains multiple cis-acting sequences required for transfer, but lacks the trans-acting transfer functions. We exploit these observations to map a donor-determining locus in the M. smegmatis chromosome using genetic linkage analysis. Together, these studies further underline the unique nature of the M. smegmatis chromosomal transfer system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The establishment of molecular genetic techniques is essential for development of new treatments for mycobacterial infections. To this end, we recently described a novel DNA transfer process that occurs in the model mycobacterial organism Mycobacterium smegmatis. This transfer system is most like conjugal DNA transfer in that it requires two viable parents, is DNAse resistant and occurs between distinct donor and recipient strains. Cis-acting sequences called bom, which confer transferability, are distinct from the prototypical oriT sites of conjugative plasmids, as they occur at multiple locations in the chromosome and require RecA in the recipient to mediate plasmid recircularization. Here, we show that a plasmid containing two of these bom regions can undergo several fates in the recipient cell, each of which require recipient recombination functions. The products of plasmid transfer that we observed provide further insights toward a model for DNA transfer. Furthermore, we have taken advantage of the recombination events that occur in the recipient to develop simple procedures for capturing, or replacing specific segments of the recipient chromosome. To demonstrate the potential of the system, we describe the capture and deletion of 25 kb of the M. smegmatis chromosome, and targeted-allele exchange of the recipient recB and recD genes. Using these transfer-mediated rearrangements, we demonstrate that homology with the recipient chromosome and RecB, but not RecD, are essential for DNA transfer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 31 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The inverted repeats (IRs) of the insertion element IS903 are composed of two functional regions. An inner region, consisting of basepairs 6–18, is the transposase binding site. The outer region (positions 1–3) is not contacted during initial transposase binding, but is essential for efficient transposition. We have examined the interaction of the IR with the transposase by isolating transposase suppressors of IR mutations. These suppressors define two patches within the N-terminus of the protein. One class of suppressors, which rescued the majority of outer IR mutants tested, contained mutations in close proximity to an aspartate residue (D121) believed to form part of the catalytic DDE motif, suggesting that their suppressive effect is in the positioning of the catalytic site at the terminus of the transposon. The hypertransposition phenotype of mutant VA119 is also consistent with this hypothesis. The second class was more allele specific and preferentially suppressed a mutation at position 3 of the IR. Finally, we showed that mutations at the termini of the IR elevate the frequency of cointegrate formation by IS903. Other outer IR mutations did not have this effect. These data are consistent with the terminal bases of the transposon playing multiple and distinct roles in transposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...