ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (3)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 56 (2005), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Rapid percolation of water through soil facilitates both the recharge and the contamination of groundwater reservoirs. We have studied the variation of water flux and pesticide leaching through a soil in northern Thailand. At a depth of 55 cm, two pits were equipped with tensiometer-controlled glass suction lysimeters that were connected to a novel on-line solid-phase extraction device. Nine insecticides varying in water solubility from 10−2 to 10+6 mg l−1 were applied on the soil surface, and leaching was monitored for 8 weeks. Measured water fluxes were compared with simulated values. Total recovery ranged from traces (malathion, triazophos) to 1.3% (dimethoate) of the applied amount, showing a decreasing retardation with increasing polarity of the substances. All pesticides were detectable in the soil solution during the first rain after application. Due to fingering, 83% of the leachate was transported through 38% of the area at leaching rates of 〈 2 mm per day. A new adaptation of the Simpson Index revealed that the diversity of the flow pattern increased exponentially with decreasing rates of seepage water flux (R2 = 0.80). No such correlation was found when leaching was faster, indicating that the flow pattern switched from a fingering- to a matric-dominated flux. No long-term leaching of insecticides was observed. The two profiles studied behaved similarly in terms of both water and pesticide transport. Therefore we suggest that the flow pattern is a stable property of the soil that can be accurately described by our combination of novel experimental setup and statistical analysis of the flow field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden , USA : Blackwell Science Ltd
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Loss of phosphorus (P) from agriculture contributes to the eutrophication of surface waters. We have assessed the magnitude and controls of P leaching and the risk of colloid-facilitated transport of P from sandy soils in Münster. Concentrations of soluble reactive P in drainage water and groundwater were monitored from 0.9 to 35 m depth. Total P concentrations, P saturation, and P sorption isotherms of soil samples were determined. Concentrations of dispersible soil P and colloidal P in drainage water and groundwater were investigated. The concentrations of soluble reactive P in drainage water and groundwater were close to background concentrations (〈 20 µg P l−1). Median concentrations in excess of 100 µg P l−1 were found down to 5.6 m depth at one of four research sites and in the lower part of the aquifer. Experimentally determined equilibrium concentrations and the degree of P saturation were good predictors of P concentrations of drainage water. Large concentrations of dispersible P were released from soil with large concentrations of oxalate-extractable P and addition of P induced further dispersion. Colloidal P was transported in a P-rich subsoil when there was a large flow of water and after nitrate had been flushed from the soil profile and total solute concentrations were small. We conclude that the concentration of soluble reactive P in drainage water is controlled by rapid adsorption in the sandy soils. Subsurface transport of dissolved P contributes substantially to the loss of P from the soils we investigated. Accumulation of P in soils increases the risk of colloid-facilitated leaching of P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 54 (2003), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Chloropyromorphite, CPM, Pb5(PO4)3Cl, is one of the most insoluble lead minerals. Inducing the formation of CPM by application of phosphate to soil has been suggested for immobilizing Pb at contaminated sites. We have examined the effect of organic matter on the completeness and the rate of CPM precipitation and on the particle size and the mobility of CPM crystals. We did experiments at pH 3–7 and with varying content of dissolved organic C, 0–72 mg C l−1, mixing Pb(NO3)2 (0.5 mmol l−1) and phosphate (2 mmol l−1) solutions. The organic matter was extracted from samples of a forest floor. The precipitates were identified by X-ray diffraction, and their size and shape were analysed by scanning electron microscopy and by photon correlation spectroscopy. The presence of organic matter in the solutions did not affect the mass of CPM that precipitated within 30 minutes at pH 5, 6 and 7. At pH 3 and 4, however, organic matter strongly inhibited the precipitation. The particles were markedly smaller in solutions containing organic matter than without at all pHs and passed through water-saturated columns filled with calcareous sand, whereas the precipitates from the carbon-free solutions did not. We suggest that the organic matter blocked the surfaces of crystal seeds and impaired crystal growth. At high pH, organic matter may additionally decrease the crystal size of the individual crystals by increasing the number of crystal seeds. We conclude that organic matter in the solution might limit the potential of phosphate to immobilize Pb in soil because it favours the formation of mobile colloids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...