ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Copper/zinc-cofactored superoxide dismutase ([Cu,Zn]-SOD) has been found in the periplasm of many bacterial species but its biological function is unknown. Here we report the cloning and characterization of sodC, encoding [Cu,Zn]-SOD, from Salmonella typhimurium. The predicted protein sequence shows only 58% identity to Escherichia coli SodC, and from this its chromosomal location and its immediate proximity to a phage gene, sodC, in Salmonella is speculated to have been acquired by bacteriophage-mediated horizontal transfer from an unknown donor. A sodC mutant of S. typhimurium was unimpaired on aerobic growth in rich medium but showed enhanced sensitivity in vitro to the microbicidal action of superoxide. S. typhimurium, S. choleraesuis and S. dublin sodC mutants showed reduced lethality in a mouse model of oral infection and persisted in significantly lower numbers in livers and spleens after intraperitoneal infection, suggesting that [Cu,Zn]-SOD plays a role in pathogenicity, protecting Salmonella against oxygen radical-mediated host defences. There was, however, no observable difference compared with wild type in the interaction of sodC mutants with porcine pleural, mouse peritoneal or J774 macrophages in vitro, perhaps reflecting the hierarchical capacity of different macrophage lines to kill Salmonella, the most efficient overwhelming the proposed protective effect of periplasmic SOD.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Brazilian purpuric fever (BPF) is a fulminant septicaemic infection of young children, caused by a clonal group of strains of Haemophilus influenzae biogroup aegyptius (Hae), an organism previously solely associated with conjunctivitis. Their special capacity to invade from the initial site of conjunctival infection is unexplained. A polymerase chain reaction (PCR)-amplified subtractive hybridization technique was used to identify genes specific to the BPF clonal group. A copy of bacteriophage HP1 and 46 further chromosomal loci were identified in the BPF but not in the conjunctivitis strain of Hae. Sixteen were characterized further, and one – encoding an analogue of the Legionella pneumophila epithelial cell entry-enhancing protein EnhC – was investigated in depth. Two genes, bpf001 and bpf002, unique to the BPF clonal group were identified between homologues of HI1276 and HI1277 in a complex locus close to H. influenzae genetic island 1, recently identified in pathogenic H. influenzae type b. Bpf001 encodes a protein homologous to EnhC and to the previously uncharacterized product of the meningococcal gene NMB0419. Functional studies of bpf001 proving intractable, NMB0419 was chosen as a surrogate for investigation and shown to modulate bacterial interaction with monolayers of human respiratory epithelial cells, promoting invasion, the first stage (for Hae) in the pathogenesis of BPF.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Under water-limiting conditions excitation energy harnessed by chlorophyll can lead to the formation of reactive oxygen species (ROS). Resurrection plants minimize their formation by preventing the opportunity for light–chlorophyll interaction but also quench them via antioxidants. Poikilochlorohyllous species such as Xerophyta humilis break down chlorophyll to avoid ROS formation. Homoiochlorophyllous types retain chlorophyll. We proposed that leaf folding during drying of Craterostigma wilmsii and Myrothamnus flabellifolius shades chlorophyll to avoid ROS (Farrant, Plant Ecology 151, 29–39, 2000). This was tested by preventing leaf folding during drying in light. As controls, plants were dried without light, and X. humilis was included. Craterostigma wilmsii did not survive drying in light if the leaves were prevented from folding, despite protection from increased anthocyanin and sucrose and elevated antioxidant enzyme activity. Membranes were damaged, electrolyte leakage was elevated and plastoglobuli (evidence of light stress) accumulated in chloroplasts. Restrained leaves of M. flabellifolius survived drying in light. Leaf folding allows less shading, but the extent of chemical protection (anthocyanin content and antioxidant activity) is considerably higher in this species compared with C. wilmsii. Chemical protection appears to be light regulated in M. flabellifolius but not in C. wilmsii. Drying in the dark resulted in loss of viability in the homoiochlorophyllous but not the poikilochlorophyllous species. It is hypothesized that some of the genes required for protection are light regulated in the former.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Water is a major limiting factor in growth and reproduction in plants. The ability of tissues to survive desiccation is commonly found in seeds or pollen but rarely present in vegetative tissues. Resurrection plants are remarkable as they can tolerate almost complete water loss from their vegetative tissues such as leaves and roots. Metabolism is shut down as they dehydrate and the plants become apparently lifeless. Upon rehydration these plants recover full metabolic competence and ‘resurrect’. In order to cope with desiccation, resurrection plants have to overcome a number of stresses as water is lost from the cells, among them oxidative stress, destabilization or loss of membrane integrity and mechanical stress. This review will mainly focus on the effect of dehydration in angiosperm resurrection plants and some of the strategies developed by these plants to tolerate desiccation. Resurrection plants are important experimental models and understanding the physiological and molecular aspects of their desiccation tolerance is of great interest for developing drought-tolerant crop species adapted to semi-arid areas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...