ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The occurrence of nitrogen isotope discrimination with absorption and assimilation of nitrate (NO3–) and ammonium (NH4+) was investigated using two genotypes of barley, Hordeum vulgare L. cv. Steptoe and Az12 : Az70, the latter of which lacks the characterized nitrate reductase isozymes. Plants were grown under two situations: a closed system with limited nitrogen or an open system with unlimited nitrogen, to elucidate the conditions and processes that influence discrimination. There was no discrimination observed for Az12 : Az70 when supplied with limited nitrogen. Discrimination was observed for Steptoe seedlings at high external NO3– concentrations, but not with low NO3– when assimilation is probably rapid and complete. The same pattern was observed for Steptoe when NH4+ was supplied; indicating that for both nitrogen forms discrimination is dependent upon the presence of the assimilatory enzyme and the external concentration. The implications of this study are that both internal (assimilatory enzyme distribution) and external (source concentration) factors may have a larger impact on tissue δ 15N than the form of nitrogen utilized. This suggests that tissue δ 15N may not always be a reliable indicator of a plant's integrated nitrogen nutrition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The effects of elevated carbon dioxide (CO2) on plant litter are critical determinants of ecosystem feedback to changing atmospheric CO2 concentrations. We measured concentrations of nitrogen (N) and carbon (C) and calculated C : N ratios of green leaves of two desert perennial shrubs, and the same quality parameters plus lignin and cellulose content of leaf litter from four shrub species exposed to elevated CO2 (FACE technology; Hendrey & Kimball, 1994) for 3 years in an intact Mojave Desert ecosystem. Shrubs tested were Larrea tridentata, Lycium pallidum, Lycium andersonii and Ambrosia dumosa. We calculated resorption efficiency from green tissue and leaf litter N data and measured lignin and cellulose content in litter in the last year study. Green leaves of L. tridentata grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown in ambient conditions in 1999 (P 〈 0.05). Lycium pallidum green leaves grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown under ambient conditions in 2000 (P 〈 0.05). There was no CO2 effect on C content of either species. We found no effect of CO2 on N or C content, C : N ratios, or lignin or cellulose concentrations in leaf litter of L. tridentata, L. pallidum, L. andersonii, or A. dumosa. There was no significant effect of CO2 on estimates of shrub resorption efficiency. There was a seasonal effect on green tissue and litter tissue quality for L. tridentata, with lower tissue N content in summer than in spring or winter months. These data suggest that any productivity increases with elevated CO2 in desert ecosystems may not be limited by lower leaf litter quality and that resorption efficiency calculations are best performed on an individual leaf basis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...