ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Previous studies of maize suspension-cultured cells showed that abscisic acid (ABA) treatment at warm temperatures improved the tolerance of cells to subsequent chilling. In the present study, it is shown that both ABA-treated and untreated maize cells accumulated proline in response to chilling. However, ABA-treated cells displayed less lipid peroxidation during chilling, and thus, unlike untreated cells, were able to retain the accumulated proline intracellularly. Proline application experiments indicate that an intracellular proline level higher than 2 µmole (g FW)−1 prior to chilling was needed to meaningfully reduce chilling-enhanced lipid peroxidation and significantly improve chilling tolerance. The results suggest that total proline accumulation in ABA-treated as well as untreated cells during chilling was enough to potentially improve chilling tolerance, but proline leakage rendered the control cells unable to benefit from the endogenous synthesis of proline in relation to the alleviation of chilling injury. Proline participated in chilling tolerance improvement in ABA-treated maize cells, as evidenced by: (1) the inhibition of proline accumulation by l-methionine-d, l-sulphoximine (MSO), an inhibitor of glutamine synthetase, reduced ABA-improved chilling tolerance, and (2) the addition of glutamine into the medium prevented the MSO-induced reduction in chilling tolerance. The revised relationship between proline accumulation and membrane stability at cold is discussed in the light of these current findings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Chilling tolerance was increased in suspension-cultured cells and seedlings of maize (Zea mays L. cv ‘Black Mexican Sweet’) grown in media containing glycinebetaine (GB). A triphenyl tetrazolium chloride (TTC) reduction test indicated that after a 7 d chilling period at 4 °C, cells treated with 1 mm GB at 26 °C for 1 d had a survival rate (30%) that was twice as high as that of untreated controls. The addition of 2·5 m M GB to the culture medium resulted in maximum chilling tolerance (40%). The results of a cell regrowth assay were consistent with viability determined by the TTC method. In suspension-cultured cells supplemented with various concentrations of GB, accumulation of GB in the cells was proportional to the GB concentration in the medium and was saturated at a concentration of 240 μmol (g DW)−1. The degree of increased chilling tolerance was positively correlated with the level of GB accumulated in the cells. The increased chilling tolerance was time-dependent; i.e. it was first observed 3 h after treatment and reached a plateau after 14 h. Feeding seedlings with 2·5 m M GB through the roots also improved their chilling tolerance, as evidenced by the prevention of chlorosis after chilling for 3 d at 4 °C/2 °C. Lipid peroxidation, as expressed by the production of malondialdehyde, was significantly reduced in GB-treated cells compared with the untreated controls during chilling. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation of the cell membranes in the presence of GB.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 24 (2001), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Chilling (4 °C) induced a prolonged high level of intracellular Ca2+ (Ca2+ overload) and lipid peroxidation in maize (Zea mays L. cv Black Mexican Sweet) cultured cells. However, such Ca2+ overload and enhanced lipid peroxidation were not seen in abscisic acid (ABA)-treated cells, which had an improved chilling tolerance. A Ca2+ ionophore, A23187, caused Ca2+ overload in both ABA-treated maize cells and the untreated control, whereas an enhanced lipid peroxidation was detected only in the control. The high level of active oxygen species (AOS) in the control during chilling at 4 °C could be reduced by the presence of lanthanum (La3+), a Ca2+ channel blocker, in the medium. Moreover, both the A23187-induced lipid peroxidation and AOS production in the control could be reduced by extracellular EGTA, a Ca2+ chelator. Laser-scanning confocal microscopy revealed that mitochondria were one of the major AOS sources under chilling and during A23187 treatment. In vitro assays showed that superoxide production in isolated maize mitochondria was enhanced by the presence of Ca2+. Findings suggest that chilling-induced Ca2+ influx in the control triggers a marked generation of AOS, which in turn results in the enhanced lipid peroxidation. The ability of ABA-treated cells to avoid the chilling-induced Ca2+ influx may serve as a mechanism that prevents the chilling-induced oxidative stress and thus results in less chilling injury.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...