ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 9 (2003), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Forest development following stand-replacing disturbance influences a variety of ecosystem processes including carbon exchange with the atmosphere. On a series of ponderosa pine (Pinius ponderosa var. Laws.) stands ranging from 9 to〉 300 years in central Oregon, USA, we used biological measurements to estimate carbon storage in vegetation and soil pools, net primary productivity (NPP) and net ecosystem productivity (NEP) to examine variation with stand age. Measurements were made on plots representing four age classes with three replications: initiation (I, 9–23 years), young (Y, 56–89 years), mature (M, 95–106 years), and old (O, 190–316 years) stands typical of the forest type in the region. Net ecosystem productivity was lowest in the I stands (−124 g C m−2 yr−1), moderate in Y stands (118 g C m−2 yr−1), highest in M stands (170 g C m−2 yr−1), and low in the O stands (35 g C m−2 yr−1). Net primary productivity followed similar trends, but did not decline as much in the O stands. The ratio of fine root to foliage carbon was highest in the I stands, which is likely necessary for establishment in the semiarid environment, where forests are subject to drought during the growing season (300–800 mm precipitation per year). Carbon storage in live mass was the highest in the O stands (mean 17.6 kg C m−2). Total ecosystem carbon storage and the fraction of ecosystem carbon in aboveground wood mass increased rapidly until 150–200 years, and did not decline in older stands. Forest inventory data on 950 ponderosa pine plots in Oregon show that the greatest proportion of plots exist in stands ∼ 100 years old, indicating that a majority of stands are approaching maximum carbon storage and net carbon uptake. Our data suggests that NEP averages ∼ 70 g C m−2 year−1 for ponderosa pine forests in Oregon. About 85% of the total carbon storage in biomass on the survey plots exists in stands greater than 100 years, which has implications for managing forests for carbon sequestration. To investigate variation in carbon storage and fluxes with disturbance, simulation with process models requires a dynamic parameterization for biomass allocation that depends on stand age, and should include a representation of competition between multiple plant functional types for space, water, and nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We used a spatially nested hierarchy of field and remote-sensing observations and a process model, Biome-BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem production (NEP)) for the whole forested region (8.2 million hectares) was 13.8 Tg C (168 g C m−2 yr−1), with the highest mean uptake in the Coast Range ecoregion (226 g C m−2 yr−1), and the lowest mean NEP in the East Cascades (EC) ecoregion (88 g C m−2 yr−1). Carbon stocks totaled 2765 Tg C (33 700 g C m−2), with wide variability among ecoregions in the mean stock and in the partitioning above- and belowground. The flux of carbon from the land to the atmosphere that is driven by wildfire was relatively low during the late 1990s (∼0.1 Tg C yr−1), however, wildfires in 2002 generated a much larger C source (∼4.1 Tg C). Annual harvest removals from the study area over the period 1995–2000 were ∼5.5 Tg C yr−1. The removals were disproportionately from the Coast Range, which is heavily managed for timber production (approximately 50% of all of Oregon's forest land has been managed for timber in the past 5 years). The estimate for the annual increase in C stored in long-lived forest products and land fills was 1.4 Tg C yr−1. Net biome production (NBP) on the land, the net effect of NEP, harvest removals, and wildfire emissions indicates that the study area was a sink (8.2 Tg C yr−1). NBP of the study area, which is the more heavily forested half of the state, compensated for ∼52% of Oregon's fossil carbon dioxide emissions of 15.6 Tg C yr−1 in 2000. The Biscuit Fire in 2002 reduced NBP dramatically, exacerbating net emissions that year. The regional total reflects the strong east–west gradient in potential productivity associated with the climatic gradient, and a disturbance regime that has been dominated in recent decades by commercial forestry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types.Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P〉0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P〈0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P〈0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross-site trends.These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 25 (2002), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Effect of microstructure on mixed-mode (mode I + II), high-cycle fatigue thresholds in a Ti-6Al-4V alloy is reported over a range of crack sizes from tens of micrometers to in excess of several millimeters. Specifically, two microstructural conditions were examined—a fine-grained equiaxed bimodal structure (grain size ∼20 µm) and a coarser lamellar structure (colony size ∼500 µm). Studies were conducted over a range of mode-mixities, from pure mode I (ΔKII/ΔKI = 0) to nearly pure mode II (ΔKII/ΔKI ∼ 7.1), at load ratios (minimum load/maximum load) between 0.1 and 0.8, with thresholds characterized in terms of the strain-energy release rate (ΔG) incorporating both tensile and shear-loading components. In the presence of through-thickness cracks—large (〉 4 mm) compared to microstructural dimensions—significant effects of mode-mixity and load ratio were observed for both microstructures, with the lamellar alloy generally displaying the better resistance. However, these effects were substantially reduced if allowance was made for crack-tip shielding. Additionally, when thresholds were measured in the presence of cracks comparable to microstructural dimensions, specifically short (∼200 µm) through-thickness cracks and microstructurally small (〈 50 µm) surface cracks, where the influence of crack-tip shielding would be minimal, such effects were similarly markedly reduced. Moreover, small-crack ΔGTH thresholds were some 50–90 times smaller than corresponding large crack values. Such effects are discussed in terms of the dominant role of mode I behaviour and the effects of microstructure (in relation to crack size) in promoting crack-tip shielding that arises from significant changes in the crack path in the two structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...