ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd.  (1)
  • Blackwell Science Ltd  (1)
  • 2000-2004  (2)
  • 1950-1954
  • 2004  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Weed research 44 (2004), S. 0 
    ISSN: 1365-3180
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Classical Mendelian experiments were conducted to determine the genetics and inheritance of quinclorac and acetolactate synthase (ALS)-inhibitor resistance in a biotype of Galium spurium. Plants were screened with the formulated product of either quinclorac or the ALS-inhibitor, thifensulfuron, at the field dose of 125 or 6 g active ingredient (a.i.) ha−1 respectively. Segregation in the F2 generation indicated that quinclorac resistance was a single, recessive nuclear trait, based on a 1 : 3 segregation ratio [resistant : susceptible (R : S)]. Resistance to ALS inhibitors was due to a single, dominant nuclear trait, segregating in the F2 generation in a 3 : 1 ratio (R : S). The genetic models were confirmed by herbicide screens of F1 and backcrosses between the F1 and the S parent. F2 plants that survived quinclorac treatment set seed and the resulting F3 progeny were screened with either herbicide. Quinclorac-treated F3 plants segregated in a 1 : 0 ratio (R : S), hence F2 progenitors were homozygous for quinclorac resistance. In contrast, F3 progeny segregated into three ratios: 1 : 0, 3 : 1 and 0 : 1 (R : S) in response to ALS-inhibitor treatment. This segregation pattern indicates that their F2 parents were either homozygous or heterozygous for ALS-inhibitor resistance. Therefore, there were clearly two distinct resistance mechanisms encoded by two genes that were not tightly linked as demonstrated by segregation patterns of the F3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Publishing Ltd.
    Plant species biology 19 (2004), S. 0 
    ISSN: 1442-1984
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Solanum carolinense has a gametophytic self-incompatibility (GSI) system that is typical of the Solanaceae in which pistils produce specific S-RNase proteins that disrupt the growth of pollen tubes sharing the same S-allele. However, unlike most self-incompatible plants Solanum carolinense is a weed. Self-incompatibility is uncommon in weeds because disturbed habitats require frequent recolonization (hence populations are repeatedly founded by few individuals bearing a limited number of S-alleles), effective population sizes are small (supporting few S-alleles) and habitats are ephemeral (so there is limited time for the migration of additional S-alleles into populations). We carried out a series of greenhouse experiments using clonal replicates (rhizome cuttings) of plants from two natural populations of S. carolinense to determine if there is variation in the strength of GSI within these populations. We found that the growth rate of self-pollen tubes and self-fertility increases with floral age. That is, flowers become more self-compatible as they age. Moreover, we found that self-fertility increases on plants in which the first 20 flowers receive no cross pollen. That is, when few or no fruits are produced on the first 20 flowers, self-pollination is more likely to result in fruit/seed set. Finally, we found that genotypes differ in their degree of self-fertility indicating that there is broadsense heritability for plasticity in the strength of self-incompatibility. These findings indicate that some genotypes of S. carolinense are capable of producing self-seed when cross pollen is scarce, even though the plants have a functional GSI system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...