ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Jasmonic acid (JA) is known to be involved in the response of plants to environmental stresses such as drought, and betaine (glycinebetaine) is an osmopretectant accumulated in plants under environmental stresses including drought. However, it remains currently unclear whether JA is involved in the water-stress-induced betaine accumulation in plant leaves. The present experiment, performed with the whole pear plant (Pyrus bretschneideri Redh. cv. Suli), revealed that the exogenously applied JA induced a significant increase of the betaine level in the pear leaves when the plants were not yet stressed by drought, and when the plants were subjected to water stress, the ‘JA plus drought’ treatment induced a significant higher betaine level than did the drought treatment alone. Meanwhile, the ‘JA plus drought’ treatment induced higher levels of betaine aldehyde dehydrogenase (BADH, E C 1.2.1.8) and activities in the leaves than did the drought treatment alone. These results obtained in the whole plant experiments were supported by the results of detached leaf experiments. In detached leaves JA induced significant increases in betaine levels, BADH activities and BADH protein amounts in a time- and concentration-dependent manner. These data demonstrate that JA is involved in the drought-induced betaine accumulation in pear leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 25 (2002), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In the existing magnetoelastic theories, stress is proportional to the square of magnetic intensity and the linear model developed is usually used to analyse magnetoelastic problems. For a crack problem, the perturbation of the magnetic field caused by deformation is not much less than the applied field. In this paper, complex potentials for a mode I crack with a nonlinear relation for magnetic intensity are developed. The boundary conditions on crack faces are represented in terms of the continuity of the magnetic field. A solution of the crack problem is obtained by solving the Riemann-Hilbert problem. Making use of the solution, the effects of the boundary conditions on the crack faces on the magnetoelastic coupling are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...