ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 44 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The carbon storage regulatory system of Escherichia coli controls the expression of genes involved in carbohydrate metabolism and cell motility. CsrA binding to glgCAP transcripts inhibits glycogen metabolism by promoting glgCAP mRNA decay. CsrB RNA functions as an antagonist of CsrA by sequestering this protein and preventing its action. In this paper, we elucidate further the mechanism of CsrA-mediated glgC regulation. Results from gel shift assays demonstrate that several molecules of CsrA can bind to each glgC transcript. RNA footprinting studies indicate that CsrA binds to the glgCAP leader transcript at two positions. One of these sites overlaps the glgC Shine–Dalgarno sequence, whereas the other CsrA target is located further upstream in an RNA hairpin. Results from toeprint and cell-free translation experiments indicate that bound CsrA prevents ribosome binding to the glgC Shine–Dalgarno sequence and that this reduces GlgC synthesis. The effect of two deletions in the upstream binding site was examined. Both of these deletions reduced, but did not eliminate, CsrA binding in vitro and CsrA-dependent regulation in vivo. Our findings establish that bound CsrA inhibits initiation of glgC translation, thereby reducing glycogen biosynthesis. This inhibition of translation probably contributes to destabilization of the glgC transcript that was observed previously.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of applied ichthyology 18 (2002), S. 0 
    ISSN: 1439-0426
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-01-30
    Description: We revisit a model of feedback processes proposed by Lindzen et al. (2001), in which an assumed 22% reduction in the area of tropical high clouds per degree increase in sea surface temperature produces negative feedbacks associated with upper tropospheric water vapor and cloud radiative effects. We argue that the water vapor feedback is overestimated in Lindzen et al. (2001) by at least 60%, and that the high cloud feedback is small. Although not mentioned by Lindzen et al. (2001), tropical low clouds make a significant contribution to their negative feedback, which is also overestimated. Using more realistic parameters in the model of Lindzen et al. (2001), we obtain a feedback factor in the range of -0.15 to -0.51, compared to their larger negative feedback factor of -0.45 to -1.03. It is noted that our feedback factor could still be overestimated due to the assumption of constant low cloud cover in the simple radiative-convective model.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...