ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Freshwater biology 41 (1999), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The ingestion rates of planktonic, mixotrophic cryptophytes in two perennially ice-covered Antarctic lakes in the McMurdo Dry Valleys, were investigated during the summer of 1997–1998.2. In Lake Fryxell, which is meromictic, ingestion rates increased with depth in November and were highest in a cryptophyte maximum close to the chemocline. In Lake Hoare, which is unstratified and freshwater, there was no significant difference in ingestion rates with depth. In both lakes, the highest ingestion rates occurred in early summer, decreasing in December and January. Ingestion rates varied between 0.2 bacteria cell−1 h−1 and 3.6 bacteria cell−1 h−1.3. During November, mixotrophic cryptophytes removed up to 13% of bacterial biomass day−1 and had a greater grazing impact than heterotrophic nanoflagellates (HNAN). As summer progressed, the grazing impact of cryptophytes and HNAN became similar.4. The maximum depth of cryptophytes in Lake Fryxell was predated by a population of the ciliate Plagiocampa. Plagiocampa had an ingestion rate of 0.13–0.19 cryptophytes cell−1 h−1. The grazing impact on the cryptophyte community was insignificant. However, the ciliate appeared to be indulging in temporary mixotrophy, sequestering the cryptophytes for a number of weeks before digesting them.5. It is suggested that mixotrophy is an important survival strategy in the extreme lake ecosystems of the McMurdo Dry Valleys.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Freshwater biology 41 (1999), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The plankton dynamics of Ace Lake, a saline, meromictic basin in the Vestfold Hills, eastern Antarctica was studied between December 1995 and February 1997.2. The lake supported two distinct plankton communities; an aerobic microbial community in the upper oxygenated mixolimnion and an anaerobic microbial community in the lower anoxic monimolimnion.3. Phytoplankton development was limited by nitrogen availability. Soluble reactive phosphorus was never limiting. Chlorophyll a concentrations in the mixolimnion ranged between 0.3 and 4.4 μg L−−1 during the study period and a deep chlorophyll maximum persisted throughout the year below the chemo/oxycline.4. Bacterioplankton abundance showed considerable seasonal variation related to light and substrate availability. Autotrophic bacterial abundance ranged between 0.02 and 8.94 × 108 L−−1 and heterotrophic bacterial abundance between 1.26 and 72.8 × 108 L−−1 throughout the water column.5. The mixolimnion phytoplankton was dominated by phytoflagellates, in particular Pyramimonas gelidicola. P. gelidicola remained active for most of the year by virtue of its mixotrophic behaviour. Photosynthetic dinoflagellates occurred during the austral summer, but the entire population encysted for the winter.6. Two communities of heterotrophic flagellates were apparent; a community living in the upper monimolimnion and a community living in the aerobic mixolimnion. Both exhibited different seasonal dynamics.7. The ciliate community was dominated by the autotroph Mesodinium rubrum. The abundance of M. rubrum peaked in summer. A proportion of the population encysted during winter. Only one other ciliate, Euplotes sp., occurred regularly.8. Two species of Metazoa occurred in the mixolimnion; a calanoid copepod (Paralabidocera antarctica) and a rotifer (Notholca sp.). However, there was no evidence of grazing pressure on the microbial community. In common with most other Antarctic lakes, Ace Lake appears to be driven by ‘bottom-up’ forces.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...