ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (3)
  • Blackwell Publishing Ltd.  (1)
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Clostridium botulinum and Clostridium tetani, respectively, produce potent toxins, botulinum neurotoxin (BoNT) and tetanus neurotoxin (TeTx), which are responsible for severe diseases, botulism and tetanus. Neurotoxin synthesis is a regulated process in Clostridium. The genes botR/A in C. botulinum A and tetR in C. tetani positively regulate expression of BoNT/A and associated non-toxic proteins (ANTPs), as well as TeTx respectively. The botR/A gene lies in close vicinity of the two operons which contain bont/A and antps genes in C. botulinum A, and tetR immediately precedes the tetX gene in C. tetani. We show that BotR/A and TetR function as specific alternative sigma factors rather than positive regulators based on the following results: (i) BotR/A and TetR associated with target DNAs only in the presence of the RNA polymerase core enzyme (Core), (ii) BotR/A and TetR directly bound with the core enzyme, (iii) BotR/A-Core recognized −35 and −10 regions of ntnh-bont/A promoter and (iv) BotR/A and TetR triggered in vitro transcription from the target promoters. In C. botulinum A, bont/A and antps genes are transcribed as bi- and tricistronic operons controlled by BotR/A. BotR/A and TetR are seemingly related to a new subgroup of the σ70 family that includes TcdR and UviA, which, respectively, regulate production of toxins A and B in C. difficile and bacteriocin in C. perfringens. Sequences of −35 region are highly conserved in the promoter of target toxin genes in C. botulinum, C. tetani, C. difficile and C. perfringens. Overall, a common regulation mechanism probably controls toxin gene expression in these four toxigenic clostridial species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Publishing Ltd
    Molecular microbiology 27 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Clostridium difficile toxA and toxB genes, encoding cytotoxic and enterotoxic proteins responsible for antibiotic-associated colitis and pseudomembranous colitis, were shown to be transcribed both from gene-specific promoters and from promoters of upstream genes. However, the gene-specific transcripts represented the majority of tox gene mRNAs. The 5′ ends of these mRNAs were shown to correspond to DNA sequences that had promoter activity when fused to the Escherichia coliβ-glucuronidase (gusA) gene and introduced into C. perfringens. The appearance of tox mRNA in C. difficile was repressed during exponential growth phase but increased substantially as cells entered stationary phase. When glucose or other rapidly metabolizable sugars were present in the medium, the stationary phase-associated induction was inhibited, indicating that the toxin genes are subject to a form of catabolite repression. This glucose effect was general to many toxinogenic strains having varying levels of toxin production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The PulO protein required for extracellular secretion of pullulanase by Klebsiella oxytoca is known to be highly homologous to two type IV prepilin peptidases, namely XcpA(PilD) (Pseudomonas aeruginosa) and TcpJ (Vibrio cholerae). The predicted prepilin peptidase activity of PulO was confirmed by showing that it could correctly process the product of the cloned pilE.1 type IV pilin structural gene from Neisseria gonorrhoeae in Escherichia coli. The P. aeruginosa prepilin peptidase and another putative prepilin peptidase, ComC from Bacillus subtilis, also processed prePilE. Subcellular fractionation showed that the pilE gene product that had been processed by PulO remained associated with the cytoplasmic membrane, as did the unprocessed precursor. PulO was also shown to process three of the four prePilE–PhoA hybrids tested. Southern hybridization experiments suggest that a PulO homologue is present in the N. gonorrhoeae chromosome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The last gene (pulO) of the pulC–O pullulanase secretion gene operon of Klebsiella oxytoca codes for a protein that is 52% identical to the product of the pilD/xcpA gene required for extracellular protein secretion and type IV pilus biogenesis in Pseudomonas aeruginosa. The PilD/XcpA protein is known to remove the first six amino acids of the signal sequence of the type IV pilin precursor by cleaving after the glycine residue in the conserved sequence GF(M)XXXE (where X represents hydrophobic amino acids). This prepilin peptidase cleavage site is present in the products of four genes in the pulC–O operon (PulG, PulH, Pull and PulJ proteins). It is shown here that PulO processes the pulG gene product in vivo. Processing was maximal within 15 seconds, but experiments in which the expression of pulO was uncoupled from that of the other genes in the secretion operon suggest that processing can also occur post-translationally. The products of two pulG derivatives with internal in-frame deletions were also processed by PulO, but the three PulG–PhoA hybrids, two PulJ–PhoA hybrids and the single PulH–PhoA hybrid tested did not appear to be processed. Sucrose gradient fraction-ation experiments showed that both precursor and mature forms of PulG appear to be associated with low-density, outer membrane vesicles prepared by osmotic lysis of sphaeroplasts. Neither the xcpA gene nor the Bacillus subtilis gene comC, which is also homologous to pulO and codes for a protein with type IV prepilin peptidase activity, can correct the pullulanase secretion defect in an Escherichia coli strain carrying all of the genes required for secretion except pulO. Furthermore, neither XcpA nor ComC is able to process prePulG protein in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...