ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 123 (2004), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Broccoli is well recognized as a source of glucosinolates and their isothiocyanate breakdown products. Glucoraphanin is one of the most abundant glucosinolates present in broccoli and its cognate isothiocyanate is sulphoraphane, a potent inducer of mammalian detoxication (phase 2) enzyme activity and anti-cancer agent. This study was designed to measure: glucosinolate levels in broccoli florets from an array of genotypes grown in several environments; the elevation of a key phase 2 enzyme, quinone reductase, in mammalian cells exposed to floret extracts; and total broccoli head content. There were significant environmental and genotype-by-environment effects on levels of glucoraphanin and quinone reductase induction potential of broccoli heads; however, the effect of genotype was greater than that of environmental factors. The relative rankings among genotypes for glucoraphanin and quinone reductase induction potential changed, when expressed on a per head basis, rather than on a concentration basis. Correlations of trait means in one environment vs. means from a second were stronger for glucoraphanin and quinone reductase induction potential on a per head basis than on a fresh weight concentration basis. Results of this study indicate that development of a broccoli phenotype with a dense head and a high concentration of glucoraphanin to deliver maximum chemoprotective potential (high enzyme induction potential/glucoraphanin content) is a feasible goal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Publishing Ltd.
    Plant species biology 19 (2004), S. 0 
    ISSN: 1442-1984
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Solanum carolinense has a gametophytic self-incompatibility (GSI) system that is typical of the Solanaceae in which pistils produce specific S-RNase proteins that disrupt the growth of pollen tubes sharing the same S-allele. However, unlike most self-incompatible plants Solanum carolinense is a weed. Self-incompatibility is uncommon in weeds because disturbed habitats require frequent recolonization (hence populations are repeatedly founded by few individuals bearing a limited number of S-alleles), effective population sizes are small (supporting few S-alleles) and habitats are ephemeral (so there is limited time for the migration of additional S-alleles into populations). We carried out a series of greenhouse experiments using clonal replicates (rhizome cuttings) of plants from two natural populations of S. carolinense to determine if there is variation in the strength of GSI within these populations. We found that the growth rate of self-pollen tubes and self-fertility increases with floral age. That is, flowers become more self-compatible as they age. Moreover, we found that self-fertility increases on plants in which the first 20 flowers receive no cross pollen. That is, when few or no fruits are produced on the first 20 flowers, self-pollination is more likely to result in fruit/seed set. Finally, we found that genotypes differ in their degree of self-fertility indicating that there is broadsense heritability for plasticity in the strength of self-incompatibility. These findings indicate that some genotypes of S. carolinense are capable of producing self-seed when cross pollen is scarce, even though the plants have a functional GSI system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...