ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Global change biology 2 (1996), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Trees growing in natural systems undergo seasonal changes in environmental factors that generate seasonal differences in net photosynthetic rates. To examine how seasonal changes in the environment affect the response of net photosynthetic rates to elevated CO2, we grew Pinus taeda L. seedlings for three growing seasons in open-top chambers continuously maintained at either ambient or ambient + 30 Pa CO2. Seedlings were grown in the ground, under natural conditions of light, temperature nd nutrient and water availability. Photosynthetic capacity was measured bimonthly using net photosynthetic rate vs. intercellular CO2 partial pressure (A-Ci) curves. Maximum Rubisco activity (Vcmax) and ribulose 1,5-bisphosphate regeneration capacity mediated by electron transport (Jmax) and phosphate regeneration (PiRC) were calculated from A-Ci curves using a biochemically based model. Rubisco activity, activation state and content, and leaf carbohydrate, chlorophyll and nitrogen concentrations were measured concurrently with photosynthesis measurements. This paper presents results from the second and third years of treatment.Mean leaf nitrogen concentrations ranged from 13.7 to 23.8 mg g−1, indicating that seedlings were not nitrogen deficient. Relative to ambient CO2 seedlings, elevated CO2 increased light-saturated net photosynthetic rates 60–110% during the summer, but 〈 30% during the winter. A relatively strong correlation between leaf temperature and the relative response of net photosynthetic rates to elevated CO2 suggests a strong effect of leaf temperature. During the third growing season, elevated CO2 reduced Rubisco activity 30% relative to ambient CO2 seedlings, nearly completely balancing Rubisco and RuBP-regeneration regulation of photosynthesis. However, reductions in Rubisco activity did not eliminate the seasonal pattern in the relative response of net photosynthetic rates to elevated CO2. These results indicate that seasonal differences in the relative response of net photosynthetic rates to elevated CO2 are likely to occur in natural systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 101 (1997), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Radioisotopic and spectrophotometric assays for ribulose-1,5-bisphosphate carboxy-lase/oxygenase (Rubisco) initial and final activities and Rubisco content were compared in plants chronically exposed to ozone (O3) in a greenhouse and the field. In a greenhouse experiment, Glycine max was treated in exposure chambers with either charcoal-filtered air (CF air) or 100 nl O3 1−1 for 6 h daily during vegetative growth. Samples were collected after 7 days of exposure. In a field experiment, G. max was treated in open-top chambers with either CF air or nonfiltered air with O3 added at 1.5 times ambient O3 for 12 h daily. Average daily O3 concentrations were 21 and 92 nl T1 in the CF and O3 treatments, respectively. Samples were collected during vegetative and reproductive growth. Both assays generally yielded comparable Rubisco initial and final activities for greenhouse-grown plants regardless of the O3 treatment. However for field-grown plants, Rubisco initial and final activities averaged 15 and 23% lower when assayed by the spectrophotometric rather than the radioisotopic method. For Rubisco content estimated by the spectrophotometric method, lower r2 values for the regression of Rubisco activity vs concentratio of carboxyarabinitol-1,5-bisphos-phate were observed in O3 than in CF-treated plants. Both assays yielded comparable Rubisco contents in the greenhouse and in the field although the variation was larger with the spectrophotometric method in field-grown plants. Growth conditions, field vs greenhouse, were more critical to the spectrophotometric assay performance than the O3 treatments for measurement of Rubisco activity and content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...