ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 11 (1988), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Previous studies suggest that high temperature stress on wheat (Triticum aestivum L.) involves root processes and acceleration of monocarpic senescence. Physiological changes in wheat roots and shoots were investigated to elucidate their relationship to injury from elevated temperatures after anthesis. Plants were grown under uniform conditions until 10 d after anthesis, when shoot/root regimes of 25°C/25°C, 25°C/35°C, 35°C/25°C and 35°C/35°C were imposed. Growth and senescence of shoots and grain were influenced more by root temperatures than by shoot temperatures. High root temperatures increased activities of protease and RNasc enzymes, and loss of chlorophyll, protein and RNA from shoots, whereas low root temperatures had opposite effects. High root temperatures appeared to induce shoot senescence directly. High shoot temperatures probably disrupted root processes, including export of cytokinins, and induced high leaf protease activity, senescence and cessation of grain development. The authors concluded that responses of wheat to high temperatures, whether of roots or shoots, are manifested as acceleration of senescence and may be mediated by roots during grain development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This investigation determined whether thylakoid proteins would be degraded more rapidly or not in senescing wheat (Triticum aestivum L. em. Thell.) leaves concurrently exposed to high temperatures. Excised leaves were pulse-labelled with [35S]-methionine for a 12 h period, and then incubated at 22,32 or 42°C for 0, 1, 2, or 3 d, before extracting a thylakoid enriched membrane sample. After electrophoretic separation, two prominent [35S]-labelled protein bands were chosen for further analyses. Band A contained the D-1 thylakoid protein and band B contained thylakoid proteins of the light harvesting complex (LHCII) associated with photosystem II (PSII). Total protein, [35S]-labelled protein, band A protein, and band B protein within the thylakoid enriched membrane samples were measured. Unlabelled thylakoid enriched membrane samples, extracted from leaves given similar treatments, were used to measure uncoupled whole-chain and photosystem II (PSII) electron transport and chlorophyll fluorescence. Accentuated decline in whole-chain and PSII electron transport, increasing Fo values, and decreasing Fmax values were a result of high temperature injury in leaves treated at 42°C. None of the thylakoid enriched membrane protein fractions were degraded more rapidly in high-temperature treated leaves. Degradation of the total [35S]-labelled membrane proteins and band B was inhibited by the 42°C treatment. The results indicate that high temperature stress may disrupt some aspects of normal senescence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 36 (1976), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Soybean (Glycine max L. ev. Columbus) seedlings grown in culture solution were treated with cadmium as CdSO4. Final concentrations of cadmium (Cd2+) in the solution were 0, 0.45, 0.90, and 1.35 μM. Soybean leaves, analyzed 10 days after Cd2+ was added to the culture solution, showed increased respiration rate and activities of malate dehydrogenase, acid phosphatase, ribonuclease, deoxyribonuclease, and peroxidase but decreased activity of carbonic anhydrase. Increased activity of hydrolytic enzymes and peroxidase reflects a general senescence response while the carbonic anhydrase decrease is consistent with an antagonism between cadmium and endogenous zinc. Chlorosis, epinasty, abscission of leaves, and decreased growth rate occurred in seedlings treated with 1.35 μM Cd2+.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...