ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 120 (1994), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Several lines of evidence are presented to show that the Ca2+-ATPase activity of total yeast membranes is due to the reticulum (R) type of Ca2+-ATPase: (1) Neither calmodulin nor low concentrations of calmodulin antagonists change Ca2+ uptake; (2) removal of plasma membranes (PM) following Con A treatment of spheroplasts (SP) does not significantly alter Ca2+ uptake by the remaining membranes, but increases its specific activity 3.5-fold; (3) after incubation of membranes with [γ-32P]ATP, SDS-PAGE shows the formation of acyl phosphate intermediates with molecular masses of around 100, 180–190 and 205 kDa; formation of these acyl phosphates requires Ca2+ and is blocked by cyclopiazonic acid, La3+ ions and in the absence of Ca 2+. The data on fractionation of yeast membranes are consistent with the suggestion that both the ER and the Golgi are equipped with Ca2+-ATPase(s).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 162 (1998), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The PMR1 gene of Saccharomyces cerevisiae is thought to encode a putative Ca2+-ATPase [1]. Membranes isolated from wild-type cells and from pmr1 null mutant of S. cerevisiae were fractionated on sucrose density gradients. In the pmr1 mutant we found a decrease in activity of the P-type ATPase and of ATP-dependent, protonophore-insensitive Ca2+ transport in light membranes, that comigrate with the Golgi marker GDPase. We conclude that the product of the PMR1 gene (Pmr1p) is indeed a Ca2+-ATPase of the Golgi and Golgi-like membranes. Surprisingly, the pmr1 null mutation abolished Ca2+-ATPase activity in Golgi and/or Golgi-like membranes only to 50% under conditions where they are separated from vacuolar membranes. This indicates that an additional Ca2+-ATPase is localized in Golgi and/or Golgi-like membranes. Moreover, a third Ca2+-ATPase is found in the ER and ER-like membranes. The data are consistent with the assumption that these Ca2+-ATPases are encoded by gene(s) different from PMR1. Disruption of PMR1 Ca2+-ATPase causes significant redistribution of enzyme activities and of total protein in compartments of the secretory pathway. A decrease in activity is observed for three integral membrane proteins: NADPH cytochrome c reductase, dolichyl phosphate mannose synthase, and Ca2+-ATPase, and also for total protein in Golgi, Golgi-like compartments and in vacuoles, whereas a corresponding increase of these activities is observed in endoplasmic reticulum and endoplasmic reticulum-like membranes. We assume that Ca2+-ATPases and sufficient Ca2+ gradients across the organellar membranes are important for the correct sorting of proteins to the various compartments of the secretory apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 117 (1994), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Sucrose density fractionation of yeast membranes revealed two major and two minor peaks of 45Ca2+ transport activity which all co-migrate with marker enzymes of the endoplasmic reticulum, Golgi and membranes associated with these compartments as well as with ATPase activity measured when all other known ATPase are inhibited. Co-migration of 45Ca2+ transport and ATPase activities was also found after removal of plasma membranes by concanavalin A treatment. SDS-PAGE at pH 6.3 shows the Ca2+-dependent formation of acyl phosphate polypeptides of about 110 and 200 kDa. It is concluded that several compartments or sub-compartments of yeast are equipped with Ca2+-ATPase(s). It is proposed that these compartments are derived from the protein secretory apparatus of yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...