ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
Collection
Years
  • 1
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Many published studies have used visual comparison of the timing of peak breakthrough of colloids versus conservative dissolved tracers (hereafter referred to as dissolved tracers or tracers) in subsurface media to determine whether they are advected differently, and to elucidate the mechanisms of differential advection. This purely visual approach of determining differential advec-tion may have artifacts, however, due to the attachment of colloids to subsurface media. The attachment of colloids to subsurface media may shift the colloidal peak breakthrough to earlier times, causing an apparent “faster” peak breakthrough of colloids relative to dissolve tracers even though the transport velocities for the colloids and the dissolved tracers may actually be equivalent. In this paper, a peak shift analysis was presented to illustrate the artifacts associated with the purely visual approach in determining differential advection, and to quantify the peak shift due to colloid attachment. This peak shift analysis was described within the context of microsphere and bromide transport within a zero-valent iron (ZVI) permeable reactive barrier (PRB) located in Fry Canyon, Utah. Application of the peak shift analysis to the field microsphere and bromide breakthrough data indicated that differential advection of the microspheres relative to the bromide occurred in the monitoring wells closest to the injection well in the PRB. It was hypothesized that the physical heterogeneity at the grain scale, presumably arising from differences in inter- versus intra-particle porosity, contributed to the differential advection of the microspheres versus the bromide in the PRB. The relative breakthrough (RB) of microspheres at different wells was inversely related to the ionic strength of ground water at these wells, in agreement with numerous studies showing that colloid attachment is directly related to solution ionic strength.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This research was undertaken to evaluate staining with the fluorescent compound CFDA/SE (5-(and-6-)-carboxyfluorescein diacetate, succinimidyl ester) coupled with multiple cell detection methodologies as a means to monitor bacterial transport during field-scale experiments. Stained cells of Comamonas sp. strain DA001 were injected into a shallow, aerobic aquifer in Oyster, VA, USA. Groundwater samples analyzed in the laboratory using epifluorescence microscopy, flow cytometry, ferrographic separation, and microplate spectrofluorometry yielded comparable concentrations of CFDA/SE-stained DA001 cells, although each method had a different effective lower limit of detection. Determination of cell concentrations in the field using microplate spectrofluorometry allowed the track of the bacterial plume to be monitored in near-real time, but produced results that were not as accurate as laboratory analyses. The CFDA/SE stain was well retained in the cells over a 5-month period. Normal handling of samples under fluorescent and incandescent lighting did not significantly affect sample integrity, but exposure to sunlight resulted in rapid loss of total and per cell fluorescence. The combination of CFDA/SE staining and multiple detection methods was demonstrated as an effective means to study bacterial transport in groundwater.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...