ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 106 (1993), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract In vivo fusion plasmids identified following conjugative mobilization of pCI301, the 75-kilobase (kb) lactose-proteinase plasmid of Lactococcus lactis subsp. lactis UC317, were characterized. These plasmids (95 kb) were generated from fusion-deletion events involving pCI301 and the 38-kb UC317-derived cryptic plasmid, pCI303. Recombinant plasmids were separable into distinct classes based on their associated phenotypes and restriction maps. The formation of pCI301: : pCI303 composite plasmids within strain UC317 was also demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The ParG protein (8.6 kDa) is an essential component of the DNA partition complex of multidrug resistance plasmid TP228. ParG is a dimer in solution, interacts with DNA sequences upstream of the parFG genes and also with the ParF partition protein both in the absence and presence of target DNA. Here, the solution nuclear magnetic resonance structure of ParG is reported. The ParG dimer is composed of a folded domain formed by two closely intertwined C-terminal parts (residues 33–76), and two highly mobile tails consisting of N-terminal regions (residues 1–32). The folded part of ParG has the ribbon–helix–helix (RHH) architecture similar to that of the Arc/MetJ superfamily of DNA-binding transcriptional repressors, although the primary sequence similarity is very low. ParG interacts with DNA predominantly via its folded domain; this interaction is coupled with ParG oligomerization. The dimeric RHH structure of ParG suggests that it binds to DNA by inserting the double-stranded β-sheet into the major groove of DNA, in a manner similar to transcriptional repressors from the Arc/MetJ superfamily, and that ParG can function as a transcriptional repressor itself. A new classification of proteins belonging to the Arc/MetJ superfamily and ParG homologues is proposed, based on the location of a conserved positively charged residue at either the beginning or at the end of the β-strand which forms part of the DNA recognition motif.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 11 (1994), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The plasmid-partition regions of the P1 and P7 plasmid prophages in Escherichia coli are homologues which each encode two partition proteins, ParA and ParB. The equivalent PI and P7 proteins are closely related. In each case, the proteins are encoded by an operon that is autoregulated by the ParA and ParB proteins in concert. This regulation is species-specific, as the P1 proteins are unable to repress the P7 par operon and vice versa. The homologous ParA proteins are primarily responsible for repression and bind to regions that overlap the operon promoter in both cases. The DNA-binding domain of the P7 auto-repressor lies in the amino-terminal end of the P7 ParA protein. This region includes a helix-turn-helix motif that has a clear counterpart in the P1 ParA sequence. However, despite the common regulatory mechanism and the similarity of the proteins involved in repression, the promoter-operator sequences of these two operons are very different in sequence and organization. The operator is located downstream of the promoter in P1 and upstream of it in P7, and the two regions show little, if any, homology. How these differences may have arisen from a common ancestral form is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...