ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • WILEY-BLACKWELL PUBLISHING  (1)
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 115 (1993), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Teleseismic P- and PKP-arrival times recorded by a network of 40 seismic stations deployed along a 300 km profile across the Adamawa Plateau at the northern end of the Volcanic Line in central Cameroon provide constraints on lithospheric thickness and anisotropy within the subcrustal lithosphere. These data indicate a thinned lithosphere beneath the Central African Shear Zone, where seismologically defined asthenosphere upwells from a depth of about 190 km to about 120 km in a relatively narrow belt. Thus it has only a low-amplitude effect on the observed gravity anomalies; the Bouguer gravity high over the Garoua Rift is consistent with crustal thinning beneath it. An abrupt change of the lithospheric thickness beneath the Northern Boundary Fault correlates with both the topographic relief and a distinct change of the orientation of relatively high- and low-velocity directions, which we infer to be due to anisotropy within the subcrustal lithosphere. This fault may represent an important accretionary suture zone dividing lithospheric blocks that originated in different tectonic settings and acquired different, frozen-in anisotropy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 2 (1990), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Teleseismic P arrivals at seismological stations are inverted into a model of velocity perturbations down to a depth of about 470 km. Directionally independent average residuals, computed from steeply inciding waves, are transformed into a model of lithospheric thickness. Both models show a good correspondence with the main tectonic features of the Italian Peninsula. Positive velocity perturbations are observed beneath the Alps and in depths over 200 km also beneath the Po Basin. A high-velocity anomaly of the Tyrrhenian subduction is less pronounced, probably due to a directional dependence of P velocities in the mantle. Negative velocity perturbations indicate several low-velocity regions, e.g. beneath the Northern Apennines, the Sicily region and in the upper 100 km beneath the Po Basin. The amplitudes of velocity perturbations beneath the depth of 200 km are smaller on the average than those in the upper two layers. The whole region is characterized by large undulations of the lithosphere base which reaches depths from less than 60 km to more than 150 km. The most prominent lithospheric root beneath the Alps is a product of the collision between the European and the Adriatic plates while the lithospheric thickening beneath the Calabrian coast is likely to be connected with the eastern wing of the Tyrrhenian subduction. The dramatic changes of lithosphere thickness between the northern and the southern Apenninic arcs and northern Calabria as well as the thinnings at the western closure of the Po Basin, indicate important deep-seated boundaries of lithospheric blocks of autonomous geodynamic development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-27
    Description: The increasingly dense coverage of Europe with broad-band seismic stations makes it possible to image its lithospheric structure in great detail, provided that structural information can be extracted effectively from the very large volumes of data. We develop an automated technique for the measurement of interstation phase velocities of (earthquake-excited) fundamental-mode surface waves in very broad period ranges. We then apply the technique to all available broad-band data from permanent and temporary networks across Europe. In a new implementation of the classical two-station method, Rayleigh and Love dispersion curves are determined by cross-correlation of seismograms from a pair of stations. An elaborate filtering and windowing scheme is employed to enhance the target signal and makes possible a significantly broader frequency band of the measurements, compared to previous implementations of the method. The selection of acceptable phase-velocity measurements for each event is performed in the frequency domain, based on a number of fine-tuned quality criteria including a smoothness requirement. Between 5 and 3000 single-event dispersion measurements are averaged per interstation path in order to obtain robust, broad-band dispersion curves with error estimates. In total, around 63,000 Rayleigh- and 27,500 Love-wave dispersion curves between 10 and 350 s have been determined, with standard deviations lower than 2 per cent and standard errors lower than 0.5 per cent. Comparisons of phase-velocity measurements using events at opposite backazimuths and the examination of the variance of the phase-velocity curves are parts of the quality control. With the automated procedure, large data sets can be consistently and repeatedly measured using varying selection parameters. Comparison of average interstation dispersion curves obtained with different degrees of smoothness shows that rough perturbations do not systematically bias the average dispersion measurement. They can, therefore, be treated as random but they do need to be removed in order to reduce random errors of the measurements. Using our large new data set, we construct phase-velocity maps for central and northern Europe. According to checkerboard tests, the lateral resolution in central Europe is ≤150 km. Comparison of regional surface-wave tomography with independent data on sediment thickness in North-German Basin and Polish Trough confirms the high-resolution potential of our phase-velocity measurements. At longer periods, the structure of the lithosphere and asthenosphere around the Trans-European Suture Zone (TESZ) is seen clearly. The region of the Tornquist-Teisseyre-Zone in the southeast is associated with a stronger lateral contrast in lithospheric thickness, across the TESZ compared to the region across the Sorgenfrei-Tornquist-Zone in the northwest.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...