ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: ILP/M 06.0077
    In: Publication of the International Lithosphere Programme
    In: Marine and Petroleum Geology
    Type of Medium: Monograph available for loan
    Pages: S. 785-970 : zahlr. graph. Darst.
    Series Statement: Publication of the International Lithosphere Programme 215
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 121 (1995), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Artificial neural networks can learn relationships between sediment characteristics (burial depth, composition, coordinates and thickness of overlying Quaternary deposits) and overpressures from well data, after which they can interpolate and extrapolate to areas and depths not covered by wells. We analyse data from the south-eastern part of the Pannonian Basin. We use a neural network for analysing fluid overpressures because of the complex interaction of the key variables, making it difficult to derive the functional relationships required for a statistical analysis. The optimal topology of the network (number of hidden layers and neurons) is found by minimizing the network's training and testing errors. The optimal design of the network resembles the interactions scheme of the key variables.The Pannonian Basin, originally formed in an extensional regime, has been in a compressive state of stress since Late Pliocene, causing anomalous subsidence patterns. Numerical forward modelling of compaction-driven fluid overpressures shows that, due to an increase in the level of compressive interplate stress, the fluid overpressures in the deep subbasins have increased substantially since Late Pliocene, giving rise to a very high overpressure (up to 45 MPa) at present. The neural network analyses provide an independent estimate of the current amount of overpressuring in this basin, complementing the numerical forward modelling results. The overpressure profiles obtained by the two modelling approaches are in excellent agreement, showing the same magnitude of overpressures, a reversal of the overpressure in the deepest parts of the subbasins and a general decrease of the overpressure from SW to NE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 117 (1994), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We present a finite-difference formulation for 3-D elastic flexure of the lithosphere, which is solved by a direct-matrix method. to incorporate the effect of spatial variations in rigidity, additional terms for the bi-harmonic 3-D flexure equation have been derived from a variational displacement formulation as used in finite-element methods. Additionally, planar faults are treated as discontinuities. These are implemented by an additional degree of freedom for fault heave, and a coupled continuum equation for zero-differential tilting across the fault. the 3-D finite-difference results have been tested for line loads, point loads and disc loads by analytical solutions, and for spatial variation in effective elastic thickness (EET) by 2-D finite-difference solutions. Fault-related flexure patterns are compared to the 2-D analytical broken-plate model developed by Vening-Meinesz (1950). We subsequently apply the 3-D fault model to investigate fault controlled 3-D basement geometries in Lake Tanganyika (East Africa). We show that our model is capable of predicting 3-D basement geometries, characteristically observed in rifted basins. the modelling results indicate that fault-controlled upper crustal flexure patterns are associated with low values for EET. A comparison with regional scale-model studies, showing a superposition of high EET flexure effects, supports a multilayered rheological control on continental rifting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 127 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The calculation of strength profiles along the European Geotraverse (EGT) through the Swiss Alps yields constraints on the large-scale vertical and lateral mechanical structure through the Alpine continent-continent collision zone. Strength profiles are evaluated for different assumptions on petrological stratification and strain rate and are based on temperature-depth profiles derived from transient thermo-kinematic modelling of the Neoalpine orogeny. The main contribution to the total strength results from the mantle lithosphere, which is strongly controlled by temperature. In contrast, the crustal contribution is mainly determined by variations in petrological stratification. A direct correlation between surface heat flow and the total strength of the crust, the mantle lithosphere and the entire lithosphere (crust and mantle lithosphere) is not observed. Our results demonstrate that in tectonically active areas a transient thermal model, along with detailed knowledge of the deep structure and petrology, is necessary to evaluate lithospheric strength envelopes. Inside the collision zone, strain rate has a strong control on the bottom of the mechanically strong crust, whereas outside the collision zone the effect is less significant. The cut-off depth of seismicity along the profile, which correlates largely with the bottom of the mechanically strong crust, deviates from the 300-400°C isotherm. The inferred effective elastic thickness for the Molasse Basin north of the Alps is in agreement with flexural modelling results, whereas for the Southern Alps the predictions deviate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...