ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Nitrogen (N) cycling was analyzed in the Kalahari region of southern Africa, where a strong precipitation gradient (from 978 to 230 mm mean annual precipitation) is the main variable affecting vegetation. The region is underlain by a homogeneous soil substrate, the Kalahari sands, and provides the opportunity to analyze climate effects on nutrient cycling. Soil and plant N pools, 15N natural abundance (δ15N), and soil NO emissions were measured to indicate patterns of N cycling along a precipitation gradient. The importance of biogenic N2 fixation associated with vascular plants was estimated with foliar δ15N and the basal area of leguminous plants. Soil and plant N was more 15N enriched in arid than in humid areas, and the relation was steeper in samples collected during wet than during dry years. This indicates a strong effect of annual precipitation variability on N cycling. Soil organic carbon and C/N decreased with aridity, and soil N was influenced by plant functional types. Biogenic N2 fixation associated with vascular plants was more important in humid areas. Nitrogen fixation associated with trees and shrubs was almost absent in arid areas, even though Mimosoideae species dominate. Soil NO emissions increased with temperature and moisture and were therefore estimated to be lower in drier areas. The isotopic pattern observed in the Kalahari (15N enrichment with aridity) agrees with the lower soil organic matter, soil C/N, and N2 fixation found in arid areas. However, the estimated NO emissions would cause an opposite pattern in δ15N, suggesting that other processes, such as internal recycling and ammonia volatilization, may also affect isotopic signatures. This study indicates that spatial, and mainly temporal, variability of precipitation play a key role on N cycling and isotopic signatures in the soil–plant system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Detecting the response of vegetation to climate forcing as distinct from spatial and temporal variability may be difficult, if not impossible, over the typical duration of most field studies. We analyzed the spatial and interannual variability of plant functional type biomass from field studies in low arctic tussock tundra and compared these to climate change simulations of plant community composition using a dynamic tundra vegetation model (ArcVeg). Spatial heterogeneity of peak season live aboveground biomass was estimated using field samples taken from low arctic tundra at Ivotuk, Alaska (68.5°N, 155.7°W) in 1999. Coefficients of variation for live aboveground biomass at the 1 m2 scale ranged from 14.6% for deciduous shrubs, 18.5% for graminoids and 25.3% for mosses to over 57% for forbs and lichens. Spatial heterogeneity in the ArcVeg dynamic vegetation model was simulated to be greater than the field data, ranging from 37.1% for deciduous shrubs to 107.9% for forbs. Disturbances in the model, such as caribou grazing and freezing–thawing of soil, as well as demographic stochasticity, led to the greater variability in the simulated results. Temporal variances of aboveground live biomass over a 19-year period using data from Toolik Lake, AK fell within the range of field and simulation spatial variances. However, simulations using ArcVeg suggest that temporal variability can be substantially less than site-scale spatial variability. Field data coupled with ArcVeg simulations of climate change scenarios indicate that some changes in plant community composition may be detectable within two decades following the onset of warming, and shrubs and mosses might be the key indicators of community change. Model simulations also project increasing landscape scale spatial heterogeneity (particularly of shrubs) with increasing temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 50 (2003), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . We observed marine benthic interstitial ciliates Geleia sp. and Tracheloraphis sp. inhabiting the water column of a chemically stratified salt pond. This habitat is uncharacteristic for interstitial ciliates, yet they displayed active and abundant planktonic populations (up to 800 and 250 cells/liter, respectively) and a well-defined pattern of vertical distribution. Completely absent from the oxygenated epilimnion, they first appeared at the oxic/anoxic interface and were present throughout the anoxic hypolimnion. The data could not be explained by a passive removal (e.g. by currents) of these ciliates from their conventional habitat (soft sediments) to water column. The results suggest that 1) these ciliates favored an anoxic environment, and 2) they switched to a planktonic lifestyle as appropriate conditions (seasonal anoxia) developed in the water column. This sharply contrasts the classic view of these ciliates as specifically benthic and aerobic (albeit microaerophilic) organisms. We hypothesize that Geleia sp. and Tracheloraphis sp. can readily grow in either water column or benthos, but are typically found in sediments simply because they contain their preferred (anoxic) niche.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The chemical speciation of silicon in xylem exudate from wheat (Triticum aestivum L.) was examined by 29Si NMR spectroscopy. Wheat plants were grown to maturity in silicon-free nutrient medium, and then transferred to a solution containing 0.02 mm29Si-enriched silicic acid. After 30 min the shoots were excised and xylem exudate was collected. Within 10 min the Si concentration of the xylem exudate reached values greatly in excess of that of the starting nutrient solution, eventually reaching levels as high as 8 mm. Silicon-29 nuclear magnetic resonance spectra indicated the existence of only two Si-containing species in the xylem exudate, mono and disilicic acid (H4SiO4o and (HO)3Si(µ-O)Si(OH)3o) in a ratio of approximately 7 : 1. Significantly, there was no evidence of organosilicate complexes. Nevertheless, the efficiency by which the plant concentrates aqueous silicon indicates active mechanisms of silicon transport across root cell membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 38 (2002), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Rosgen analysis, developed for assessing channel stability in streams from the western United States, is applied to the Oswego River watershed in the New Jersey Pine Barrens. The Rosgen method requires calibration to local conditions due to the impact of peat substrates on channel morphology. In particular, the presence of peat induces low width to depth ratios and greater channel confinement, reversing typical downstream morphologic trends observed in other rivers. Therefore peat is added to those substrates already evaluated by Rosgen. A consistent sequence of Rosgen stream types develops along the Oswego River and its tributaries created by spatially overlapping processes of water table emergence, peat development, and channel formation. This sequence delineates a “natural” transition of stream channel morphology downslope through the watershed. First, as the water table reaches the surface of dry sloughs, Sphagnum growth is stimulated and peat substrates result. These substrates have lower permeability than the underlying gravelly sands. Next, surface runoff, through braided pathways over the peat, eventually erodes mainly anastomosing channels into the peat. Finally, single-thread channels develop in underlying gravelly sands further downslope. This downslope sequence, expressed as Rosgen stream types, begins generally with DA7 streams arising from dry sloughs. These pass to E7, C7 or DA5 stream types that in turn pass to B5c, C5 and C4 stream types. Departures from the “natural” stream type sequence occur along the course of the Oswego and its tributaries due to human activities such as the construction of dams, bridges and drainage ditches, stream bank erosion at streamside camping and picnic areas and the clear-cutting of adjacent stands of Atlantic white cedar.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The KdpD sensor kinase and the KdpE response regulator control the expression of the kdpFABC operon, encoding the KdpFABC high-affinity K+ transport system of Escherichia coli. Low turgor pressure has been postulated to be the environmental stimulus to express KdpFABC. KdpD has autokinase, phosphotransferase and, like many sensor kinases, response regulator (phospho-KdpE) specific phosphatase activity. To determine which of these activities are altered in response to the environmental stimulus, we isolated and analysed six kdpD mutants that cause constitutive expression of KdpFABC. In three of the mutants, phosphatase activity was undetectable and, in two, phosphatase was reduced. Kinase activity was unaffected in four of the mutants, but elevated in one. In one mutant, a pseudorevertant of a kdpD null mutation, kinase and phosphatase were both reduced to 20% of the wild-type level. These findings suggest that initiation of signal transduction by KdpD is mediated by the inhibition of the phospho-KdpE-specific phosphatase activity of KdpD, leading to an accumulation of phospho-KdpE, which in turn activates the expression of the KdpFABC system. The data also suggest that levels of activity in vitro may differ from what occurs in vivo, because in vitro conditions cannot replicate those in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...