ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (1)
  • Blackwell Science Ltd  (1)
  • 2005-2009  (2)
  • 1975-1979
  • 1960-1964
  • 1870-1879
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the yeast Saccharomyces cerevisiae, PKA and Sch9 exert similar physiological roles in response to nutrient availability. However, their functional redundancy complicates to distinguish properly the target genes for both kinases. In this article, we analysed different phenotypic read-outs. The data unequivocally showed that both kinases act through separate signalling cascades. In addition, genome-wide expression analysis under conditions and with strains in which either PKA and/or Sch9 signalling was specifically affected, demonstrated that both kinases synergistically or oppositely regulate given gene targets. Unlike PKA, which negatively regulates stress-responsive element (STRE)- and post-diauxic shift (PDS)-driven gene expression, Sch9 appears to exert additional positive control on the Rim15-effector Gis1 to regulate PDS-driven gene expression. The data presented are consistent with a cyclic AMP (cAMP)-gating phenomenon recognized in higher eukaryotes consisting of a main gatekeeper, the protein kinase PKA, switching on or off the activities and signals transmitted through primary pathways such as, in case of yeast, the Sch9-controlled signalling route. This mechanism allows fine-tuning various nutritional responses in yeast cells, allowing them to adapt metabolism and growth appropriately.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 53 (2005), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Qualitative and quantitative changes of microbial communities in soil microcosms during bioremediation were determined throughout one year. The soil was contaminated with 0%, 2.5%, 5%, 10% (wt/wt) of petrochemical sludge containing polynuclear aromatic hydrocarbons. We analyzed the hydrocarbon concentration in the microcosms, the number of cultivable bacteria using CFU and most probable number assays, the community structure using denaturing gradient gel electrophoresis, and the metabolic activity of soil using dehydrogenase activity and substrate-induced respiration assays. After one year of treatment, the chemical analysis suggested that the hydrocarbon elimination process was over. The biological analysis, however, showed that the contaminated microcosms suffered under long-term disturbance. The number of heterotrophic bacteria that increased after sludge addition (up to 108–109 cells ml−1) has not returned to the level of the control soil (2–6 × 107 cells ml−1). The community structure in the contaminated soils differed considerably from that in the control. The substrate-induced respiration of the contaminated soils was significantly lower (10-fold) and the dehydrogenase activity was significantly higher (20–40-fold) compared to the control. Changes in the community structure of soils depended on the amount of added sludge. The species, which were predominant in the sludge community, could not be detected in the contaminated soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...