ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • Blackwell Publishing Ltd  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 101 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The calculation of the uncertainty in an estimated rotation requires a parametrization of the rotation group; that is, a unique mapping of the rotation group to a point in 3-D Euclidean space, R3. Numerous parametrizations of a rotation exist, including: (1) the latitude and longitude of the axis of rotation and the angle of rotation; (2) a representation as a Cartesian vector with length equal to the rotation angle and direction parallel to the rotation axis; (3) Euler angles; or (4) unit length quaternions (or, equivalently, Cayley-Klein parameters).The uncertainty in a rotation is determined by the effect of nearby rotations on the rotated data. The uncertainty in a rotation is small, if rotations close to the best fitting rotation degrade the fit of the data by a large amount, and it is large, if only rotations differing by a large amount cause such a degradation. Ideally, we would like to parametrize the rotations in such a way so that their representation as points in R3 would have the property that the distance between two points in R3 reflects the effects of the corresponding rotations on the fit of the data. It can be shown mathematically that this is impossible, but for rotations of small angle, it can be done to close approximation by using vectors in Cartesian coordinates. Thus, we are led to parametrizing the uncertainty separately from the parametrization of the best fitting rotation. This approach results in simpler, more efficient calculations than if uncertainties are described in terms of rotation parameters (i.e., latitude, longitude, and the angle). We illustrate this with the example of equations for determining the uncertainty in a composite rotation from the uncertainties of its constituents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A microearthquake survey was conducted in the central Andes of Peru, east of the city of Lima, to study the seismicity and style of tectonic deformation of the Peruvian Andes. Although most of the stations forming the temporary seismographic network were located on the high Andes, the vast majority of the microearthquakes recorded occurred to the east of the mountain belt: on the Huaytapallana fault in the Eastern Cordillera and beneath the western margin of the sub-Andes. Thus the sub-Andes appear to be the physiographic province subject to the most intense seismic deformation. Focal depths of the crustal events in this region range generally from 15 to 35 km and some events beneath the sub-Andes appear to be as deep as 40-50 km. The fault-plane solutions of events in the sub-Andean margin show thrust faulting on steep planes oriented roughly north-south, similar to that observed in teleseismic earthquakes studied using body wave modelling. The Huaytapallana fault in the Cordillera Oriental also shows relatively high seismicity along a NE-SW trend that agrees with the fault scarp and the east-dipping nodal plane of two large earthquakes that occurred on this fault on 1969 July 24 and October 1. Microearthquakes of intermediate depth recorded during the experiment show a flat seismic zone about 25 km thick at a depth of about 100 km. This agrees with recent observations showing that beneath Peru the slab first dips at an angle of about 30° to a depth of 100 km and then flattens following a quasi-horizontal trajectory. Fault-plane solutions of intermediate-depth microearthquakes have horizontal T axes oriented east-west suggesting slab pull is the dominant force in the downgoing slab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-11
    Description: A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2017-06-15
    Description: O’Dea et al . challenged the inference that the Isthmus of Panama has been in place for the last 10 million years or more and from "an exhaustive review and reanalysis of geological, paleontological, and molecular records," they argued for a "formation of the Isthmus of Panama sensu stricto around 2.8 Ma." I review environmental changes since ~5 Ma throughout Earth, and I argue that environmental changes in the Central American-Caribbean region have been part of a concurrent, worldwide phenomenon that requires a global, not local, explanation. Accordingly, evidence of environmental change from the Central American-Caribbean region does not implicate the emergence of the Isthmus of Panama.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...