ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (9)
  • 1995-1999  (4)
  • 1990-1994  (5)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Root exudates were sampled from detopped root systems of castor bean (Ricinus communis). Different volume flux rates were imposed by changing the pneumatic pressure around the root system using a Passioura-type pressure chamber. The concentrations of cations, anions, amino acids, organic acids and abscisic acid decreased hyperbolically when flux rates increased from pure root exudation up to values typical for transpiring plants. Concentrations at low and high fluxes differed by up to 40 times (phosphate) and the ratio of substances changed by factors of up to 10. During the subsequent reduction of flux produced by lowering the pneumatic pressure in the root pressure chamber, the concentrations and ratios of substances deviated (at a given flux rate) from those found when flux was increased. The flux dependence of exudate composition cannot therefore be explained by a simple dilution mechanism. Xylem sap samples from intact, transpiring plants were collected using a Passioura-type root pressure chamber. The concentrations of the xylem sap changed diurnally. Substances could be separated into three groups: (1) calcium, magnesium and amino acid concentrations correlated well with the values expected from their concentration-flux relationships, whereas (2) the concentrations of sulphate and phosphate deviated from the expected relationships during the light phase, and (3) nitrate and potassium concentrations in intact plants varied in completely the opposite manner from those in isolated root systems. Abscisic acid concentrations in the root exudate were dependent on the extent of water use and showed strong diurnal variations in the xylem sap of intact plants even in droughtstressed plants. Calculations using root exudates overestimated export from the root system in intact plants, with the largest deviation found for proton flux (a factor of 10). We conclude that root exudate studies cannot be used as the sole basis for estimating fluxes of substances in the xylem of intact plants. Consequences for studying and modelling xylem transport in whole plants are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A model is presented which solves simultaneously for leaf-scale stomatal conductance, CO2 assimilation and the energy balance as a function of leaf position within canopies of well-watered vegetation. Fluxes and conductances were calculated separately for sunlit and shaded leaves. A linear dependence of photosynthetic capacity on leaf nitrogen content was assumed, while leaf nitrogen content and light intensity were assumed to decrease exponentially within canopies. Separate extinction coefficients were used for diffuse and direct beam radiation. An efficient Gaussian integration technique was used to compute fluxes and mean conductances for the canopy. The multilayer model synthesizes current knowledge of radiation penetration, leaf physiology and the physics of evaporation and provides insights into the response of whole canopies to multiple, interacting factors. The model was also used to explore sources of variation in the slopes of two simple parametric models (nitrogen- and light-use efficiency), and to set bounds on the magnitudes of the parameters.For canopies low in total N, daily assimilation rates are ∼10% lower when leaf N is distributed uniformly than when the same total N is distributed according to the exponentially decreasing profile of absorbed radiation. However, gains are negligible for plants with high N concentrations. Canopy conductance, Gc should be calculated as Gc=Aσ(fslgsl+fshgsh), where Δ is leaf area index, fsi and fsh are the fractions of sunlit and shaded leaves at each level, and gsi and gsh are the corresponding stomatal conductances. Simple addition of conductances without this weighting causes errors in transpiration calculated using the ‘big-leaf’ version of the Penman-Monteith equation. Partitioning of available energy between sensible and latent heat is very responsive to the parameter describing the sensitivity of stomata to the atmospheric humidity deficit. This parameter also affects canopy conductance, but has a relatively small impact on canopy assimilation.Simple parametric models are useful for extrapolating understanding from small to large scales, but the complexity of real ecosystems is thus subsumed in unexplained variations in parameter values. Simulations with the multilayer model show that both nitrogen- and radiation-use efficiencies depend on plant nutritional status and the diffuse component of incident radiation, causing a 2- to 3-fold variation in these efficiencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants (Helianthus annuus L.) were subjected to soil drying with their shoots either kept fully turgid using a Passioura-type pressure chamber or allowed to decrease in water potential. Whether the shoots were kept turgid or not, leaf conductance decreased below a certain soil water content. During the soil drying, xylem sap samples were taken from individual intact and transpiring plants. Xylem sap concentrations of nitrate and phosphate decreased with soil water content, whereas the concentrations of the other anions (SO42 and Cl−) remained unaltered. Calcium concentrations also decreased. Potassium, magnesium, manganese and sodium concentrations stayed constant during soil drying. In contrast, the pH, the buffering capacity at a pH below 5 and the cation/anion ratio increased after soil water content was lowered below a certain threshold. Amino acid concentration of the xylem sap increased with decreasing soil water content. The effect of changes in ion concentrations in the xylem sap on leaf conductance is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Higher rates of nitrate assimilation are required to support faster growth in enhanced carbon dioxide. To investigate how this is achieved, tobacco plants were grown on high nitrate and high light in ambient and enhanced (700 μmol mol–1) carbon dioxide. Surprisingly, enhanced carbon dioxide did not increase leaf nitrate reductase (NR) activity in the middle of the photoperiod. Possible reasons for this anomalous result were investigated. (a) Measurements of biomass, nitrate, amino acids and glutamine in plants fertilized once and twice daily with 12 mol m–3 nitrate showed that enhanced carbon dioxide did not lead to a nitrate limitation in these plants. (b) Enhanced carbon dioxide modified the diurnal regulation of NR activity in source leaves. The transcript for nia declined during the light period in a similar manner in ambient and enhanced carbon dioxide. The decline of the transcript correlated with a decrease of nitrate in the leaf, and was temporarily reversed after re-irrigating with nitrate in the second part of the photoperiod. The decline of the transcript was not correlated with changes of sugars or glutamine. NR activity and protein decline in the second part of the photoperiod, and NR is inactivated in the dark in ambient carbon dioxide. The decline of NR activity was smaller and dark inactivation was partially reversed in enhanced carbon dioxide, indicating that post-transcriptional or post-translational regulation of NR has been modified. The increased activation and stability of NR in enhanced carbon dioxide was correlated with higher sugars and lower glutamine in the leaves. (c) Enhanced carbon dioxide led to increased levels of the minor amino acids in leaves. (d) Enhanced carbon dioxide led to a large decrease of glycine and a small decrease of serine in leaves of mature plants. The glycine:serine ratio decreased in source leaves of older plants and seedlings. The consequences of a lower rate of photorespiration for the levels of glutamine and the regulation of nitrogen metabolism are discussed. (e) Enhanced carbon dioxide also modified the diurnal regulation of NR in roots. The nia transcript increased after nitrate fertilization in the early and the second part of the photoperiod. The response of the transcript was not accentuated in enhanced carbon dioxide. NR activity declined slightly during the photoperiod in ambient carbon dioxide, whereas it increased 2-fold in enhanced carbon dioxide. The increase of root NR activity in enhanced carbon dioxide was preceded by a transient increase of sugars, and was followed by a decline of sugars, a faster decrease of nitrate than in ambient carbon dioxide, and an increase of nitrite in the roots. (f) To interpret the physiological significance of these changes in nitrate metabolism, they were compared with the current growth rate of the plants. (g) In 4–5-week-old plants, the current rate of growth was similar in ambient and enhanced carbon dioxide (≈ 0·4 g–1 d–1). Enhanced carbon dioxide only led to small changes of NR activity, nitrate decreased, and overall amino acids were not significantly increased. (h) Young seedlings had a high growth rate (0·5 g–1 d–1) in ambient carbon dioxide, that was increased by another 20% in enhanced carbon dioxide. Enhanced carbon dioxide led to larger increases of NR activity and NR activation, a 2–3-fold increase of glutamine, a 50% increase of glutamate, and a 2–3-fold increase in minor amino acids. It also led to a higher nitrate level. It is argued that enhanced carbon dioxide leads to a very effective stimulation of nitrate uptake, nitrate assimilation and amino acid synthesis in seedlings. This will play an important role in allowing faster growth rates in enhanced carbon dioxide at this stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The cost of nitrogen storage to current growth was examined in relation to N availability in the biennial Cirsium vulgare. Plants were grown outdoors, in sand culture, with continuous diel drip irrigation of fertilization medium containing one of five different N concentrations. Plants grown at the highest N concentration stored twice as much N in their tap roots as did plants grown at the lowest N concentration. In high-N-grown plants, the storage of N reserves occurred during the period of maximum growth, at the same time as tap-root production. At the time of maximum biomass, stored N was also at a maximum. During the period following maximum biomass, no additional storage of N occurred. This pattern was observed despite frequent late-season leaf senescence which resulted in a large pool of potentially mobile N which could have been stored at no cost to growth. In low-N-grown plants, the production of tap-root storage tissue and the filling of that tissue with stored N were staggered. Tap-root production and growth occurred during the period of maximum growth, as in the high-N-grown plants. However, filling of the storage tissue with N occurred late in the growing season, when the pool of mobile N from senescent leaves was large. The utilization of this late-season N source occurred with little or no cost to growth, and this N is labelled, according to previous definitions, as ‘accumulated’. The costs of storing N in plants of the different N treatments were calculated using two models based on different growth constraints. In one model, the cost of N storage was represented as lost growth due to allocation of N to storage, rather than to the photosynthetic shoot (i.e. growth was assumed to be limited by carbon acquisition). In the second model, the storage cost was calculated as lost growth due to allocation of N to storage, rather than to the nitrogen-acquiring fine-root system (i.e. growth was assumed to be limited by nitrogen acquisition). In both models, the total cost of N storage was predicted to decrease as N availability decreased due to smaller storage pool sizes in plants of the low-N treatments. The cost of filling the tap root with stored N as a percentage of the total storage cost was also reduced as N availability decreased due to the occurrence of late-season accumulation. By relying, at least in part, on late-season accumulation, plants grown at the lowest three levels of N availability reduced total storage costs by 15 to 22%. The results demonstrate that plants are capable of adjusting their storage patterns in response to low nitrogen availability such that the costs of storage are reduced.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We have investigated the interactions between resource assimilation and storage in rosette leaves, and their impact on the growth and reproduction of the annual species Arabidopsis thaliana. The resource balance was experimentally perturbed by changing (i) the external nutrition, by varying the nitrogen supply; (ii) the assimilation and reallocation of resources from rosette leaves to reproductive organs, by cutting or covering rosette leaves at the time of early flower bud formation, and (iii) the internal carbon and nitrogen balance of the plants, by using isogenic mutants either lacking starch formation (PGM mutant) or with reduced nitrate uptake (NU mutant).When plants were grown on high nitrogen, they had higher concentrations of carbohydrates and nitrate in their leaves during the rosette phase than during flowering. However, these storage pools did not significantly contribute to the bulk flow of resources to seeds. The pool size of stored resources in rosette leaves at the onset of seed filling was very low compared to the total amount of carbon and nitrogen needed for seed formation. Instead, the rosette leaves had an important function in the continued assimilation of resources during seed ripening, as shown by the low seed yield of plants whose leaves were covered or cut off. When a key resource became limiting, such as nitrogen in the NU mutants and in plants grown on a low nitrogen supply, stored resources in the rosette leaves (e.g. nitrogen) were remobilized, and made a larger contribution to seed biomass. A change in nutrition resulted in a complete reversal of the plant response: plants shifted from high to low nutrition exhibited a seed yield similar to that of plants grown continuously on a low nitrogen supply, and vice versa. This demonstrates that resource assimilation during the reproductive phase determines seed production.The PGM mutant had a reduced growth rate and a smaller biomass during the rosette phase as a result of changes in respiration caused by a high turnover of soluble sugars (Caspar et al. 1986; W. Schulze et al. 1991). During flowering, however, the vegetative growth rate in the PGM mutant increased, and exceeded that of the wild-type. By the end of the flowering stage, the biomass of the PGM mutant did not differ from that of the wild-type. However, in contrast to the wild-type, the PGM mutant maintained a high vegetative growth rate during seed formation, but had a low rate of seed production. These differences in allocation in the PGM mutant result in a significantly lower seed yield in the starchless mutants. This indicates that starch formation is not only an important factor during growth in the rosette phase, but is also important for whole plant allocation during seed formation. The NU mutant resembled the wild-type grown on a low nitrogen supply, except that it unexpectedly showed symptoms of carbohydrate shortage as well as nitrogen deficiency.In all genotypes and treatments, there was a striking correlation between the concentrations of nitrate and organic nitrogen and shoot growth on the one hand, and sucrose concentration and root growth on the other. In addition, nitrate reductase activity (NRA) was correlated with the total carbohydrate concentration: low carbohydrate levels in starchless mutants led to low NRA even at high nitrate supply. Thus the concentrations of stored carbohydrates and nitrate are directly or indirectly involved in regulating allocation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We studied the effects of variations of water flux through the plant, of diurnal variation of water flux, and of variation of vapour pressure deficit at the leaf on compensation pressure in the Passioura-type pressure chamber, the composition of the xylem sap and leaf conductance in Ricinus communis. The diurnal pattern of compensation pressure showed stress relaxation during the night hours, while stress increased during the day, when water limitation increased. Thus compensation pressure was a good measure of the momentary water status of the root throughout the day and during drought. The bulk soil water content at which predawn compensation pressure and abscisic acid concentration in the xylem sap increased and leaf conductance decreased, was high when the water usage of the plant was high. For all xylem sap constituents analysed, variations in concentrations during the day were larger than changes in mean concentrations with drought. Mean concentrations of phosphate and the pH of the xylem sap declined with drought, while nitrate concentration remained constant. When the measurement leaf was exposed to a different VPD from the rest of the plant, leaf conductance declined by 400mmol m−2 s−1 when compensation pressure increased by 1 MPa in all treatments. The compensation pressure needed to keep the shoot turgid, leaf conductance and the abscisic acid concentration in the xylem were linearly related. This was also the case when the highly dynamic development of stress was taken into account.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth.External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...