ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (2)
  • 2000-2004  (2)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 223 (2003), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Efficient type-III secretion depends on cytosolic molecular chaperones, which bind specifically to the translocators and effectors. In the past there has been a tendency to shoe-horn all type-III-secretion chaperones into a single structural and functional class. However, we have shown that the LcrH/SycD-like chaperones consist of three central tetratricopeptide-like repeats that are predicted to fold into an all-alpha-helical array that is quite distinct from the known structure of the SycE class of chaperones. Furthermore, we predict that this array creates a peptide-binding groove that is utterly different from the helix-binding groove in SycE. We present a homology model of LcrH/SycD that is consistent with existing mutagenesis data. We also report the existence of tetratricopeptide-like repeats in regulators of type-III secretion, such as HilA from Salmonella enterica and HrpB from Ralstonia solanacearum. The discovery of tetratricopeptide-like repeats in type-III-secretion regulators and chaperones provides a new conceptual framework for structural and mutagenesis studies and signals a potential unification of prokaryotic and eukaryotic chaperone biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The recent determination of the complete genome sequence of Corynebacterium diphtheriae, the aetiological agent of diphtheria, has allowed a detailed comparison of its physiology with that of its closest sequenced pathogenic relative Mycobacterium tuberculosis. Of major importance to the pathogenicity and resilience of the latter is its particularly complex cell envelope. The corynebacteria share many of the features of this extraordinary structure although to a lesser level of complexity. The cell envelope of M. tuberculosis has provided the molecular targets for several of the major anti-tubercular drugs. Given a backdrop of emerging multi-drug resistant strains of the organism (MDR-TB) and its continuing global threat to human health, the search for novel anti-tubercular agents is of paramount importance. The unique structure of this cell wall and the importance of its integrity to the viability of the organism suggest that the search for novel drug targets within the array of enzymes responsible for its construction may prove fruitful. Although the application of modern bioinformatics techniques to the ‘mining’ of the M. tuberculosis genome has already increased our knowledge of the biosynthesis and assembly of the mycobacterial cell wall, several issues remain uncertain. Further analysis by comparison with its relatives may bring clarity and aid the early identification of novel cellular targets for new anti-tuberculosis drugs. In order to facilitate this aim, this review intends to illustrate the broad similarities and highlight the structural differences between the two bacterial envelopes and discuss the genetics of their biosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...