ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: Time-dependent piezomagnetic fields due to inclined rectangular faults embedded in a viscoelastic, homogeneous half-space were investigated. A viscoelastic rheology of the surrounding medium was assumed to relate piezomagnetic changes at the surface to the stress field at depth. The viscosity of the medium strongly influences time-dependent stress changes. Especially in volcanic areas, rocks near magmatic sources are considerably heated. The presence of higher temperatures produces a lower effective viscosity in the crust, making it necessary to consider its inelastic properties. Rocks no longer behave in a purely elastic manner but permanently deform because the viscosity is significantly lowered. To determine the time-dependent piezomagnetic fields in a viscoelastic medium, we applied the Correspondence Principle to the analytical elastic solutions for dislocation sources. Among all the possible rheological models, we investigated three cases in which the bulk modulus is purely elastic and the shear modulus relaxes as for (i) a Maxwell solid, (ii) a standard linear solid (SLS) and (iii) a Kelvin solid. The piezomagnetic field completely vanishes after the relaxation process for a Maxwell rheology, whereas it is found to decrease over time and reach some finite offset values for SLS and Kelvin rheologies. A real case study concerning the magnetic anomalies observed during the 2002–2003 Mt Etna eruption is also investigated. Post-eruptive magnetic variations were in general agreement with a viscoelastic relaxation process of a SLS rheology undergoing in the volcano edifice.
    Description: Published
    Description: 901-912
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: piezomagnetic field ; viscoelasticity ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...