ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 405 (2000), S. 938-941 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Central Andes are the Earth's highest mountain belt formed by ocean–continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-30
    Description: We use data from recently installed broad-band seismographs on the islands of Crete, Gavdos, Santorini, Naxos and Samos in the Hellenic subduction zone to construct receiver function images of the crust and upper mantle from south of Crete into the Aegean Sea. The stations are equipped with STS-2 seismometers and they are operated by GFZ Potsdam, University of Chania and ETH Zürich. Teleseismic earthquakes recorded by these stations at epicentral distances between 35° and 95° have been used to calculate receiver functions. The receiver function method is a routinely used tool to detect crustal and upper-mantle discontinuities beneath a seismic station by isolating the P–S converted waves from the coda of the P wave. Converted P–S energy from the oceanic Moho of the subducted African Plate is clearly observed beneath Gavdos and Crete at a depth ranging from 44 to 69 km. This boundary continues to the north to nearly 100 km depth beneath Santorini island. Because of a lack of data the correlation of this phase is uncertain north of Santorini beneath the Aegean Sea. Moho depths were calculated from primary converted waves and multiply reflected waves between the Moho and the Earth's surface. Beneath southern and eastern Crete the Moho lies between 31 and 34 km depth. Beneath western and northern Crete the Moho is located at 32 and 39 km depth, respectively, and behaves as a reversed crust–mantle velocity contrast, possibly caused by hydration and serpentinization of the forearc mantle peridotite. The Moho beneath Gavdos island located south of Crete in the Libyan Sea is at 26 km depth, indicating that the crust south of the Crete microcontinent is also thinning towards the Mediterranean ridge. This makes it unlikely that part of the crust in Crete consists of accreted sediments transported there during the present-day subduction process which began approximately 15 Ma because the backstop, i.e. the boundary between the current accretionary wedge of the Mediterranean ridge and the Crete microcontinent, is located approximately 100 km south of Gavdos. A seismic boundary at 32 km depth beneath Santorini island probably marks the crustal base of the Crete microcontinent. A shallower seismic interface beneath Santorini at 20–25 km depth may mark the depth of the detachment between the Crete microcontinent and the overlying Aegean subplate. The Moho in the central and northern Aegean, at Naxos and Samos, is observed at 25 and 28 km depth, respectively. Assuming a stretching factor of 1.2–1.3, crustal thickness in the Aegean was 30–35 km at the inception of the extensional regime in the Middle Miocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...