ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-19
    Description: Innovation and improvement report on the extension of capabilities to measure emerging EOVs including metagenomics across different observational platforms with links to MicroB3 best practice.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-19
    Description: Validated prototypes of new and enhanced biogeochemical and biological sensors and instruments. Validation will be undertaken in the laboratory, in test scenarios, and by deployment in operational conditions
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The need to cover established and emerging Essential Ocean Variables (EOVs) as defined by the Global Ocean Observing System (GOOS) calls for the development and refinement of the available sensors and samplers, specifically for biogeochemical and biology/ecosystem observations. For several of these EOVs as well as for microplastics as a relatively novel variable of particular societal concern, technological progress has been made as part of AtlantOS. This involves the samplers and sensors and the platforms to use them from as such as well as the required methodologies for obtaining relevant and well-validated results and disseminate data according to the FAIR principles. For biological observations, a main focus was on automated sampling of particles and water samples. While active, pump-based samplers for particles in the water column have been available for many years, it turned out that they were not yet fully mature for operational sampling of zooplankton, microorganisms (e.g., bacteria, archaea, phytoplankton and other eukaryotic unicellular organisms), and microplastics. AtlantOS partners joined forces with manufacturers to overcome limitations with respect to quantitative filtering without leakage, avoidance of plastic contamination and the option for preservation with appropriate agents. Technical solutions were identified and partly tested but could not in all cases be fully implemented in the time frame of the project. Technologies for automated water sampling proved to be more mature and samplers could already be successfully included in observation programs. For both water and particle samples only very few manufacturers offer off-the-shelf solutions which slows down innovation and adaption to user’s needs and may impede successful implementation of appropriate instruments on a larger scale. Particle traps are well-established and operational passive samplers of sinking particles that are widely used for phytoplankton and particulate matter observations based on microscopic sorting and chemical analyses. Using legacy samples collected in the Arctic it could be demonstrated that the same samples can also be used for omics-based observations allowing to address the emerging EOV ‘Microbe biomass and diversity’ and also contributing to the ‘Phytoplankton biomass and diversity’ EOV. Applied to legacy samples also from other sites, this holds the potential to assess past microbial communities of the Atlantic that could serve as a baseline for comparisons to recent communities that are subject to global change. Significant progress was achieved in building capacities for the implementation of omics-based observations of marine organisms into recent and future observation programs. The feasibility of samplers and different preservation agents was tested and a comparison of different methods for omics-based investigations of microbial communities was conducted. The Global Omics Observatory Network (GLOMICON) was established to better connect the institutes and initiatives that are active in the field. As part of GLOMICON, solutions were implemented that allow for a registration of omics observatories and for the sharing of protocols and bioinformatics code. Irrespective of these achievements, major steps still need to be taken to consolidate and standardize approaches in this rapidly evolving field and to establish operational and well-integrated omics-observations as part of an Atlantic Ocean Observation System. For biogeochemical observations, the focus was placed on sensors for oxygen and marine CO2 system parameters (pCO2, total alkalinity) and their readiness for integration into classical as well as emerging biogeochemical observation platforms. For oxygen, the situation is very favourable as the oxygen optode technology and the best practices routines developed around it can be considered fully operational. There are no obstacles for the D3.17 „OceanSITES Innovation Report“ 5 integration of oxygen optodes into the full range of autonomous ocean observation platforms (mooring, drifter, glider, wave gliders, floats, voluntary observing ship etc.). For marine CO2 system parameters, work carried out in AtlantOS focussed the CO2 partial pressure (pCO2) and total alkalinity (TA). With respect to pCO2 it can be stated, that the membraneequilibration sensors with NDIR detection have clearly matured to a level that they can be used routinely on a range of platforms (mooring, wave glider, voluntary observing ship) with an accuracy of ~1% under well-constrained operation conditions and with rigorous data processing routines. Major limitations still exist, however, for this sensor technology on moving platforms (long sensor response time) and platforms with stringent payload and energy limitations (float, glider etc.). In contrast, the pCO2 (as well as pH) optode technology, in which significant hopes lie, has not been forthcoming and existing products still do not meet the quality requirements for open ocean applications. For TA, our intensive testing both in the laboratory and in the field has led to significant improvement of the commercially available system, which now can be considered operational. It allows high-quality autonomous bench-top measurements (e.g., on voluntary observing ships). Ideas for a submersible version of the system are in early stages and would need significant design and testing efforts. With respect to the possibilities of oxygen and carbon measurements from novel autonomous observation platforms, our work in AltantOS has shown very promising applications on profiling Argo floats, submersible winch systems with upper ocean profilers as well as wave gliders. On all these platforms, we were able to successfully implement oxygen and carbon measurements for high-quality observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-22
    Description: Monitoring changes in eukaryotic microbial communities is critical for understanding ecosystem dynamics, trophic interactions and the impacts of climate change. Long-term time series are an important tool for monitoring changes in ecological communities, but time series from a single location may not be representative of regional dynamics. In the German Bight, the Helgoland Roads time series is such a long-term series. Here, we consider the spatial dynamics of the eukaryotic microbes as an indicator of the representativeness of the Helgoland Roads site for the coastal German Bight, which is located in the North Sea. The eukaryotic microbial community in the German Bight was analysed at Helgoland Roads and two coastal stations (Cuxhaven and Wilhelmshaven) between March and October 2016 using metabarcoding. In addition, an oceanographical model was used to check for potential hydrological connectivity between the stations during the sampling period. Our results showed that the communities were different at the three stations. Helgoland was dominated by dinoflagellates, whereas the coastal stations had more diverse communities. Furthermore, differences were observed in the dinoflagellate and diatom communities between the three stations. Lagrangian particle tracking applied to the model results, showed limited connectivity between Helgoland and the coastal stations in 2016. The differences between Helgoland and the coastal stations were correlated with the different hydrological regimes and associated nutrient contents. Our observations suggest the presence of different eukaryotic microbial communities separated by complex hydrological conditions in the coastal German Bight.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-17
    Description: Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79°N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5,500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2,500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a warm water anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 99, pp. 83-96, ISSN: 1385-1101
    Publication Date: 2018-02-16
    Description: Investigation of phytoplankton biodiversity, ecology, and biogeography is crucial for understanding marine ecosystems. Research is often carried out on the basis of microscopic observations, but due to the limitations of this approach regarding detection and identification of picophytoplankton (0.2–2 μm) and nanophytoplankton (2–20 μm), these investigations are mainly focused on the microphytoplankton (20–200 μm). In the last decades, various methods based on optical and molecular biological approaches have evolved which enable a more rapid and convenient analysis of phytoplankton samples and a more detailed assessment of small phytoplankton. In this study, a selection of these methods (in situ fluorescence, flow cytometry, genetic fingerprinting, and DNA microarray) was placed in complement to light microscopy and HPLC-based pigment analysis to investigate both biomass distribution and community structure of phytoplankton. As far as possible, the size classes were analyzed separately. Investigations were carried out on six cruises in the German Bight in 2010 and 2011 to analyze both spatial and seasonal variability. Microphytoplankton was identified as the major contributor to biomass in all seasons, followed by the nanophytoplankton. Generally, biomass distribution was patchy, but the overall contribution of small phytoplankton was higher in offshore areas and also in areas exhibiting higher turbidity. Regarding temporal development of the community, differences between the small phytoplankton community and the microphytoplankton were found. The latter exhibited a seasonal pattern regarding number of taxa present, alpha- and beta-diversity, and community structure, while for the nano- and especially the picophytoplankton, a general shift in the community between both years was observable without seasonality. Although the reason for this shift remains unclear, the results imply a different response of large and small phytoplankton to environmental influences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...