ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉Hydraulic fracturing and waterjet slotting fracturing have been demonstrated to be effective in creating artificial fractures and stimulating gas production in hard coal seams. However, these methods are inefficient for soft-outburst coal seams because these created fractures are short and easy to close. To eliminate the outburst risk of soft coals, a novel enhanced coalbed methane under-panel cross-strata drainage technique via hydraulic flushing was proposed in this work. The hydraulic flushing effects of boreholes of different sizes in the coal seam were also pre-evaluated by a simulation approach. The modeling results indicate that as the radius of the borehole increases, the plastic and stress-decreasing zone expands. A field test was also conducted in the Minjin mine, China, that investigated the gas pressure variation between three monitoring boreholes at different distances from a hydraulic flushing borehole. Test results indicate that the effective influence radius of gas extraction is approximately 5.5 m. Based on the results of the field test and borehole camera observation, the unloaded coal quantity and the average diameter of the boreholes were estimated to be 8.0 t and 942 mm, respectively. The borehole diameter expanded up to 10 times larger than its original size. The average gas extraction concentration and gas flow rate increased by approximately 2 and 3.5 times, respectively, demonstrating the effectiveness of the proposed hydraulic flushing in improving the gas extraction efficiency. The hydraulic flushing technique therefore is proved to be efficient in eliminating the outburst risk of coal and reducing greenhouse gas emissions.〈/span〉
    Print ISSN: 1078-7275
    Electronic ISSN: 1558-9161
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉Hydraulic fracturing and waterjet slotting fracturing have been demonstrated to be effective in creating artificial fractures and stimulating gas production in hard coal seams. However, these methods are inefficient for soft-outburst coal seams because these created fractures are short and easy to close. To eliminate the outburst risk of soft coals, a novel enhanced coalbed methane under-panel cross-strata drainage technique via hydraulic flushing was proposed in this work. The hydraulic flushing effects of boreholes of different sizes in the coal seam were also pre-evaluated by a simulation approach. The modeling results indicate that as the radius of the borehole increases, the plastic and stress-decreasing zone expands. A field test was also conducted in the Minjin mine, China, that investigated the gas pressure variation between three monitoring boreholes at different distances from a hydraulic flushing borehole. Test results indicate that the effective influence radius of gas extraction is approximately 5.5 m. Based on the results of the field test and borehole camera observation, the unloaded coal quantity and the average diameter of the boreholes were estimated to be 8.0 t and 942 mm, respectively. The borehole diameter expanded up to 10 times larger than its original size. The average gas extraction concentration and gas flow rate increased by approximately 2 and 3.5 times, respectively, demonstrating the effectiveness of the proposed hydraulic flushing in improving the gas extraction efficiency. The hydraulic flushing technique therefore is proved to be efficient in eliminating the outburst risk of coal and reducing greenhouse gas emissions.〈/span〉
    Print ISSN: 1078-7275
    Electronic ISSN: 1558-9161
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...