ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Association for the Sciences of Limnology and Oceanography  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society of Limnology and Oceanography, 2011. This article is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 56 (2011): 1-16 , doi:10.4319/lo.2011.56.1.0001.
    Description: We investigated the patterns in bacterial growth, production, respiration, growth efficiency (BGE), and bacterial leucine respiration and C-to-leucine yield (i.e., conversion factor [CF]) along a transect off the coast of Oregon. Plankton respiration along the transect averaged 1.15 ± 0.16 mg C L-1 h-1, peaking in the coastal upwelling region. The respiration in the filtered fraction, which was dominated by bacterial biomass, accounted for 79% of the total respiration. The different approaches that we used converged to an average BGE of 13% ± 1%, with peaks of over 20% in the more productive coastal areas and values declining to below 5% toward the oligotrophic gyre waters. There was overall coherence between the various aspects of bacterial C metabolism: communities with low BGE also tended to have low growth rates and high leucine-to-thymidine incorporation ratios. The patterns in BGE were mirrored at the single compound level, and in the most oligotrophic sites, bacteria tended to quickly respire a large fraction (20-75%) of the leucine that was taken up and had the lowest C-to-leucine yield, suggesting that the patterns in bulk BGE and growth also apply to individual substrates. Bacterial growth was a function of both C consumption and BGE; these two aspects of bacterial C metabolism do not necessarily covary, and they are regulated differently. The patterns in C consumption, growth, BGE, and leucine metabolism all reflect the basic physiological response of bacteria to energy limitation due to high maintenance costs associated with life in oligotrophy.
    Description: This work was supported by the National Science Foundation grant OCE- 0002236 to E.S. and P.d.G. and grant REN2001-5097-E/MAR of the Spanish Government to J.M.G. Writing of this manuscript was supported by grant CTM2008-03309/MAR to J.M.G. and a Visitor Fellowship of the Catalan Government to P.d.G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...