ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 64 (2002), S. 289-311 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract A surprising variety of ion channels found in a wide range of species from Homo to Paramecium use calmodulin (CaM) as their constitutive or dissociable Ca2+-sensing subunits. The list includes voltage-gated Ca2+ channels, various Ca2+- or ligand-gated channels, Trp family channels, and even the Ca2+-induced Ca2+ release channels from organelles. Our understanding of CaM chemistry and its relation to enzymes has been instructive in channel research, yet the intense study of CaM regulation of ion channels has also revealed unexpected CaM chemistry. The findings on CaM channel interactions have indicated the existence of secondary interaction sites in addition to the primary CaM-binding peptides and the functional differences between the N- and C-lobes of CaM. The study of CaM in channel biology will figure into our understanding on how this uniform, universal, vital, and ubiquitous Ca2+ decoder coordinates the myriad local and global cell physiological transients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-13
    Print ISSN: 0066-4227
    Electronic ISSN: 1545-3251
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-03-01
    Description: ▪ Abstract  A surprising variety of ion channels found in a wide range of species from Homo to Paramecium use calmodulin (CaM) as their constitutive or dissociable Ca2+-sensing subunits. The list includes voltage-gated Ca2+ channels, various Ca2+- or ligand-gated channels, Trp family channels, and even the Ca2+-induced Ca2+ release channels from organelles. Our understanding of CaM chemistry and its relation to enzymes has been instructive in channel research, yet the intense study of CaM regulation of ion channels has also revealed unexpected CaM chemistry. The findings on CaM channel interactions have indicated the existence of secondary interaction sites in addition to the primary CaM-binding peptides and the functional differences between the N- and C-lobes of CaM. The study of CaM in channel biology will figure into our understanding on how this uniform, universal, vital, and ubiquitous Ca2+ decoder coordinates the myriad local and global cell physiological transients.
    Print ISSN: 0066-4278
    Electronic ISSN: 1545-1585
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...