ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 38 (2000), S. 491-513 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Notes: Abstract Wheat (Triticum aestivum L) is grown throughout the grasslands from southern Mexico into the prairie provinces of Canada, a distance of nearly 4200 km. The total area seeded to wheat varies considerably each year; however, from 28 to 32 million ha are planted in the Great Plains of the United States alone. Generally in the central Great Plains, an area from central Texas through central Nebraska, 15 million ha are seeded to winter wheat each year. A wide range of environmental conditions exist throughout this area that may affect the development and final severity of wheat leaf rust (caused by Puccinia triticina L), stripe rust (caused by P. striiformis), and stem rust (caused by P. graminis Pers. f. sp tritici) epidemics and the subsequent reduction in wheat yields. Variation in severity of rust epidemics in this area depends on differences in crop maturity at the time of infection by primary inoculum, host resistance used, and environmental conditions. The interrelationships among time, host, pathogen and environment are complex, and studying the interactions is very difficult. Historically, cultivars with new or different leaf rust resistance genes become ineffective after several years of large-scale production within the Great Plains, and then cultivars carrying new or different resistance genes must be developed and released into production. This is the typical "boom and bust" cycle of the cereal rust resistance genes in the central Great Plains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Anthropology 14 (1985), S. 77-102 
    ISSN: 0084-6570
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Ethnic Sciences , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-10-01
    Print ISSN: 0084-6570
    Electronic ISSN: 1545-4290
    Topics: Biology , Ethnic Sciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-09-01
    Description: Wheat (Triticum aestivum L) is grown throughout the grasslands from southern Mexico into the prairie provinces of Canada, a distance of nearly 4200 km. The total area seeded to wheat varies considerably each year; however, from 28 to 32 million ha are planted in the Great Plains of the United States alone. Generally in the central Great Plains, an area from central Texas through central Nebraska, 15 million ha are seeded to winter wheat each year. A wide range of environmental conditions exist throughout this area that may affect the development and final severity of wheat leaf rust (caused by Puccinia triticina L), stripe rust (caused by P. striiformis), and stem rust (caused by P. graminis Pers. f. sp tritici) epidemics and the subsequent reduction in wheat yields. Variation in severity of rust epidemics in this area depends on differences in crop maturity at the time of infection by primary inoculum, host resistance used, and environmental conditions. The interrelationships among time, host, pathogen and environment are complex, and studying the interactions is very difficult. Historically, cultivars with new or different leaf rust resistance genes become ineffective after several years of large-scale production within the Great Plains, and then cultivars carrying new or different resistance genes must be developed and released into production. This is the typical “boom and bust” cycle of the cereal rust resistance genes in the central Great Plains.
    Print ISSN: 0066-4286
    Electronic ISSN: 1545-2107
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...