ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-07-01
    Description: ▪ Abstract  Apolipoprotein A-IV (apo A-IV) is a glycoprotein synthesized by the human intestine. In rodents, both the small intestine and liver secrete apo A-IV, but the small intestine is the major organ responsible for the circulating apo A-IV. Intestinal apo A-IV synthesis is markedly stimulated by fat absorption and appears not to be mediated by the uptake or reesterification of fatty acids to form triglycerides. Rather, the formation of chylomicrons acts as a signal for the induction of intestinal apo A-IV synthesis. Intestinal apo A-IV synthesis is also enhanced by a factor from the ileum, probably peptide tyrosine-tyrosine. The inhibition of food intake by apo A-IV is mediated centrally. The stimulation of intestinal synthesis and the secretion of apo A-IV by lipid absorption are rapid; thus, apo A-IV likely plays a role in the short-term regulation of food intake. Other evidence suggests that apo A-IV may also be involved in the long-term regulation of food intake and body weight. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV response to lipid feeding and may explain why the chronic ingestion of a high-fat diet predisposes both animals and humans to obesity.
    Print ISSN: 0199-9885
    Electronic ISSN: 1545-4312
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Nutrition 21 (2001), S. 231-254 
    ISSN: 0199-9885
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Apolipoprotein A-IV (apo A-IV) is a glycoprotein synthesized by the human intestine. In rodents, both the small intestine and liver secrete apo A-IV, but the small intestine is the major organ responsible for the circulating apo A-IV. Intestinal apo A-IV synthesis is markedly stimulated by fat absorption and appears not to be mediated by the uptake or reesterification of fatty acids to form triglycerides. Rather, the formation of chylomicrons acts as a signal for the induction of intestinal apo A-IV synthesis. Intestinal apo A-IV synthesis is also enhanced by a factor from the ileum, probably peptide tyrosine-tyrosine. The inhibition of food intake by apo A-IV is mediated centrally. The stimulation of intestinal synthesis and the secretion of apo A-IV by lipid absorption are rapid; thus, apo A-IV likely plays a role in the short-term regulation of food intake. Other evidence suggests that apo A-IV may also be involved in the long-term regulation of food intake and body weight. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV response to lipid feeding and may explain why the chronic ingestion of a high-fat diet predisposes both animals and humans to obesity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 35 (2005), S. 505-538 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood and composites are discussed as candidates for rotorblades. The fibers and matrices for composites are described, and their high stiffness, low density, and good fatigue performance are emphasized. Manufacturing technologies for composites are presented and evaluated with respect to advantages, problems, and industrial potential. The important technologies of today are prepreg (pre-impregnated) technology and resin infusion technology. The mechanical properties of fiber composite materials are discussed, with a focus on fatigue performance. Damage and materials degradation during fatigue are described. Testing procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic composites, new structural materials concepts, new structural design aspects, structural health monitoring, and the coming trends and markets for wind energy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...