ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physical Chemistry 50 (1999), S. 443-484 
    ISSN: 0066-426X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract In this overview we discuss the vibrational spectrum of phosphaethyne, HCP, in its electronic ground state, as revealed by complementary experimental and theoretical examinations. The main focus is the evolution of specific spectral patterns from the bottom of the potential well up to excitation energies of approximately 25,000 cm-1, where large-amplitude, isomerization-type motion from H-CP to CP-H is prominent. Distinct structural and dynamical changes, caused by an abrupt transformation from essentially HC bonding to mainly PH bonding, set in around 13,000 cm-1. They reflect saddle-node bifurcations in the classical phase space-a phenomenon well known in the nonlinear dynamics literature-and result in characteristic patterns in the spectrum and the quantum-number dependence of the vibrational fine-structure constants. Two polar opposites are employed to elucidate the spectral patterns: the exact solution of the Schrodinger equation, using an accurate potential energy surface and an effective or resonance Hamiltonian (expressed in a harmonic oscillator basis set and block diagonalized into polyads), which is defined by parameters adjusted to fit either the measured or the calculated vibrational energies. The combination of both approaches-together with classical mechanics and semiclassical analyses-provides a detailed spectroscopic picture of the breaking of one bond and the formation of a new one.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-10-01
    Description: ▪ Abstract  In this overview we discuss the vibrational spectrum of phosphaethyne, HCP, in its electronic ground state, as revealed by complementary experimental and theoretical examinations. The main focus is the evolution of specific spectral patterns from the bottom of the potential well up to excitation energies of approximately 25,000 cm−1, where large-amplitude, isomerization-type motion from H–CP to CP–H is prominent. Distinct structural and dynamical changes, caused by an abrupt transformation from essentially HC bonding to mainly PH bonding, set in around 13,000 cm−1. They reflect saddle-node bifurcations in the classical phase space—a phenomenon well known in the nonlinear dynamics literature—and result in characteristic patterns in the spectrum and the quantum-number dependence of the vibrational fine-structure constants. Two polar opposites are employed to elucidate the spectral patterns: the exact solution of the Schrödinger equation, using an accurate potential energy surface and an effective or resonance Hamiltonian (expressed in a harmonic oscillator basis set and block diagonalized into polyads), which is defined by parameters adjusted to fit either the measured or the calculated vibrational energies. The combination of both approaches—together with classical mechanics and semiclassical analyses—provides a detailed spectroscopic picture of the breaking of one bond and the formation of a new one.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...