ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-01-01
    Description: This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver-reactors and utilizing the upgraded, hydrogen-rich fuel in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes about 30% of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets as well as in large scale to be operated in connection with conventional combined-cycle plants. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, adjusted to operate with the reformed gas. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science in Israel. Start-up of the pilot plant is scheduled in April 2001. The midterm goal is to replace fossil fuels by renewable or non-conventional feedstock in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emission. Examples might be upgrading of bio-gas from municipal solid waste as well as upgrading of weak gas resources.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-07-19
    Description: A novel solar process and reactor for thermochemical conversion of biomass to synthesis gas is described. The concept is based on dispersion of biomass particles in a molten inorganic salt medium and, simultaneously, absorbing, storing and transferring solar energy needed to perform pyrolysis reactions in the high-temperature liquid phase. A lab-scale reactor filled with carbonates of potassium and sodium was set up to study the kinetics of fast pyrolysis and the characteristics of transient heat transfer for cellulose particles (few millimeters size) introduced into the molten salt medium. The operating conditions were reaction temperatures of 1073–1188 K and a particle peak-heating rate of 100 K/sec. The assessments performed for a commercial-scale solar reactor demonstrate that pyrolysis of biomass particles dispersed in a molten salt phase could be a feasible option for the continuous, round-the-clock production of syngas, using solar energy only.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-02-01
    Description: The thermal fixation of atmospheric nitrogen is explored, using a recently developed concept of a particle-seeded solar receiver. The thermodynamics and the kinetics of the formation of nitric oxide (NO) in air at temperatures of about 2300 K are analyzed, and the required residence time and the time to reach the steady state of the reaction between nitrogen and oxygen are calculated. The novel particle-seeded receiver concept is briefly described. The adaptation of the particle-seeded receiver to the fixation reaction in terms of heating rate of the air and residence time is validated based on previous test results and complementary calculations. A proposed method where the solar receiver/reactor is simultaneously coupled with power production, using the exhausted hot air from the reactor to generate electricity, is described. This concept can definitely increase the economical benefit of the process and, thus, its potential attractiveness. Some illustrative figures for a commercial size system are provided.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-09-14
    Description: A special setup, electrically heated, enabling the simulation of the process conditions encountered in a solar chemical reactor, is described. The setup allows us to study the thermal and chemical processes in different solid (powder or granules) reactant layers from the beginning of the heating until the reaction is completed, in a heating condition typical for indirectly, externally heated solar reactors. The particular case of the ZnO carboreduction process is analyzed in this paper as an example. Tests were executed using different powder mixtures of ZnO–C to demonstrate the layer-wise nature of the process. The results show that the reactivity and the behavior of mixtures strongly depend on their components structures, impurities, and stoichiometry. This method can be generally applied for studying endothermic chemical reactions involving other solid reactants.
    Print ISSN: 0199-6231
    Electronic ISSN: 1528-8986
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...