ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society of Mechanical Engineers  (4)
  • 2010-2014  (4)
  • 1930-1934
  • 1
    Publikationsdatum: 2013-07-22
    Beschreibung: Two tank storage systems using molten salt represent today's state of the art in energy storage for concentrating solar power (CSP) plants. This concept shows a limited potential for further cost reductions, since the capital costs are dominated by the expenses for the salt inventory. The application of solid storage materials represents a promising approach to reduce capital costs. While this approach avoids also the risk of freezing and lessens corrosion problems, the efficiency of the heat transfer between the heat transfer fluid (HTF) and the solid storage medium is crucial. This paper introduces the CellFlux concept, which uses an intermediate closed air loop to transfer energy between the HTF and the solid storage material. A modular concept is chosen to optimize the size of the air flow channels. An initial project will provide the fundamentals needed to design a CellFlux storage unit. The feasibility will be proven by a 100 kW/500 kWh pilot storage module.
    Print ISSN: 0199-6231
    Digitale ISSN: 1528-8986
    Thema: Energietechnik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2010-10-12
    Beschreibung: For parabolic trough power plants using synthetic oil as the heat transfer medium, the application of solid media sensible heat storage is an attractive option in terms of investment and maintenance costs. One important aspect in storage development is the storage integration into the power plant. A modular operation concept for thermal storage systems was previously suggested by DLR, showing an increase in storage capacity of more than 100%. However, in these investigations, the additional costs needed to implement this storage concept into the power plant, such as for extra piping, valves, pumps, and control, had not been considered. These aspects are discussed in this paper, showing a decrease in levelized energy costs with a modular storage integration of 2–3%. In a life cycle assessment a comparison of an AndaSol-I type solar thermal power plant with the original two-tank molten salt storage and with a “hypothetical” concrete storage shows an advantage of the concrete storage technology concerning environmental impacts. The environmental impacts of the hypothetical concrete based AndaSol-I decreased by 7%, considering 1 kW h of solar electricity delivered to the grid. Regarding only the production of the power plant, the emissions decreased by 9.5%.
    Print ISSN: 0199-6231
    Digitale ISSN: 1528-8986
    Thema: Energietechnik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2010-04-29
    Beschreibung: Solar thermal systems using absorber evaporating steam directly require isothermal energy storage. The application of latent heat storage systems is an option to fulfill this demand. This concept has been demonstrated mainly for low temperature heating and refrigeration applications, the experience for the power level and temperature range characteristic of solar process heat and solar thermal power plants is limited. Cost effective implementation of the latent heat storage concept demands low cost phase change materials (PCMs). These PCMs usually show low thermal conductivity limiting the power density during the charging/discharging process. This paper describes various approaches, which have been investigated to overcome these limitations. Based on fundamental PCM-research and laboratory-scale experiments, the sandwich concept has been identified to show the highest potential. The sandwich concept has been demonstrated successfully for three different storage units ranging from 2 kW to 100 kW at melting temperatures of 145°C and 225°C.
    Print ISSN: 0199-6231
    Digitale ISSN: 1528-8986
    Thema: Energietechnik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2010-05-01
    Beschreibung: For future parabolic trough plants direct steam generation in the absorber pipes is a promising option for reducing the costs of solar thermal power generation. These new solar thermal power plants require innovative storage concepts, where the two-phase heat transfer fluid poses a major challenge. A three-part storage system is proposed where a phase change material (PCM) storage will be deployed for the two-phase evaporation, while concrete storage will be used for storing sensible heat, i.e., for preheating of water and superheating of steam. A pinch analysis helps to recognize interface constraints imposed by the solar field and the power block and describes a way to dimension the latent and sensible components. Laboratory test results of a PCM test module with ∼140 kgNaNO3, applying the sandwich concept for enhancement of heat transfer, are presented, proving the expected capacity and power density. The concrete storage material for sensible heat was improved to allow the operation up to 500°C for direct steam generation. A storage system with a total storage capacity of ∼1 MWh is described, combining a PCM module and a concrete module, which will be tested in 2009 under real steam conditions around 100 bars.
    Print ISSN: 0199-6231
    Digitale ISSN: 1528-8986
    Thema: Energietechnik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...