ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    facet.materialart.
    Unknown
    American Society of Limnology and Oceanography
    In:  Limnology and Oceanography: Methods, 13 (1). pp. 40-52.
    Publication Date: 2018-09-17
    Description: Methods for measuring aerobic methane oxidation (MOx) rates in aquatic environments are often based on the incubation of water samples, during which the consumption of methane (CH4) is monitored. Typically, incubation vessels are sealed with butyl rubber because these elastomers are essentially impermeable for gases. We report on the potential toxicity of five different commercially available, lab-grade butyl stoppers on MOx activity in samples from marine and lacustrine environments. MOx rates in incubations sealed with non-halogenated butyl were 〉 50% lower compared to parallel incubations with halogenated butyl rubber stoppers, suggesting toxic effects associated with the use of the non-halogenated butyl type. Aqueous extracts of non-halogenated butyl rubber were contaminated with high amounts of various organic compounds including potential bactericides such as benzyltoluenes and phenylalkanes. Comparably small amounts of organic contaminants were liberated from the halogenated butyl rubber stoppers but only two halogenated stopper types were found that did not seem to leach any organics into the incubation medium. Furthermore, the non-halogenated and two types of the halogenated butyl elastomers additionally leached comparably high amounts of zinc. While the source of the apparent toxicity with the use of the non-halogenated rubber stoppers remains elusive, our results indicate that leaching of contaminants from some butyl rubber stoppers can severely interfere with the activity of MOx communities, highlighting the importance of testing rubber stoppers for their respective contamination potential. The impact of leachates from butyl rubber on the assessment of biogeochemical reaction rates other than MOx seems likely but needs to be verified.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: ANOXIA: Evidence for Eukaryote Survival and Paleontological Strategies. , ed. by Altenbach, A. V., Bernhard, J. M. and Seckbach, J. Cellular Origin, Life in Extreme Habitats and Astrobiology, 21 . Springer, Netherlands, pp. 17-39. ISBN 978-94-007-1895-1
    Publication Date: 2013-01-17
    Description: This chapter provides an overview of biogeochemical reactions in marine sediments underlying temporal or permanent hypoxic and anoxic water bodies in modern and past oceans. The aim of this review is to describe the chemical environment that organisms inhabiting surface sediments encounter during oxygen depletion or deficiency. It also introduces important metabolic processes that govern or are governed by different redox settings. In Section 2, biogeochemical processes in sediments underlying fully oxygenated water bodies are elucidated. Section 3 explains differences in biogeochemical reactions in hypoxic and anoxic environments as opposed to oxygenated environments. Modern oxygen minimum zones and permanent anoxic environments are introduced. In Section 4, biogeochemical processes during past anoxic events and during the era before the first rise of oxygen are reviewed.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Society of Limnology and Oceanography
    In:  Limnology and Oceanography: Methods, 12 . pp. 25-45.
    Publication Date: 2019-09-23
    Description: The efficiency of the “benthic microbial methane filter” at marine cold seeps is controlled by diffusive sulfate supply from the overlying seawater and advective methane flux from deep reservoirs. High fluid fluxes reduce the penetration depth of sulfate and limit the filter to a very narrow zone close to the sediment-water interface. Here, we introduce a new sediment-flow-through (SLOT) system, to mimic the balance between fluid/methane flow and sulfate supply in natural sediments. SLOT enables anaerobic incubations of intact sediment cores under natural flow regimes. In addition to traditional in- and outflow sampling, geochemical parameters can be monitored along the sediment core using microsensors and rhizons. In a first test run, two cores with gassy sediments from the Eckernförde Bay (Baltic Sea) were incubated and monitored for 310 days under low (11.2 cm y–1) and high fluid flow (112.1 cm y–1) conditions. Rates of anaerobic oxidation of methane (AOM) were one order of magnitude higher (3.07 mmol m–2 d–1) in the high flow compared to the low flow regime (0.29 mmol m–2 d–1), whereas methane efflux was twice as high (0.063 and 0.033 mmol m–2 d–1, respectively). Sediment profiles of sulfide, sulfate, total alkalinity, pH, redox, and other parameters offered important information on the nature and dynamics of the biogeochemical reactions in the sediment cores including methanotrophy, sulfate reduction, carbonate precipitation, and sulfide oxidation. The SLOT system proofed to be an effective device to study the temporal evolution of biogeochemical parameters in intact sediments subjected to advective fluid transport.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-12
    Description: The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP)Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...