ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-15
    Description: Allogeneic hematopoetic stem cell transplantation (HSCT) is the treatment of choice for a variety of hematologic malignancies. Graft-versus-Host disease (GvHD) is a key contributor to treatment related morbidity and mortality and consequently limits the efficacy of allogeneic HSCT. Interleukin 10 (IL-10) is a well-known cytokine with immunoregulatory and anti-inflammatory properties, also important in context of GvHD. B cells have been described as potent IL-10 producers in various situations. Here we show how host as well as donor derived B cells contribute to GvHD amelioration through IL-10 production. We address the role of IL-10 in GvHD in an acute murine MHC mismatch model: Mice on a C57BL/6 background received bone marrow and CD90+ T cells from mice on a BALB/c background or vice versa. Transplantation experiments with IL-10 deficient donor or host cells clearly show the importance of donor derived IL-10 in general. To further dissect the cells contributing to IL-10 production in this situation we employed an IL-10 knock-in reporter mouse in which expression of eGFP is under control of the Il-10 locus. Lethal irradiation as used in the conditioning regiment before transplantation revealed B cells as major contributors of host derived IL-10. In addition, transfer of cells from reporter mice into preconditioned recipients showed also donor B cells as contributors to IL-10 production. A phenotypical characterization of the eGFP+ B cells exhibited a CD1d+TIM-1+CD5int phenotype, in line with immunoregulatory B cells. To finally confirm the relevance of B cells derived IL-10 in GvHD, we employed B6.B-IL-10-/- mice that have a B cell specific IL-10 knock-out as donors or recipients. Here we found a reduced survival associated with the incapability of the B cells to produce IL-10 in both cases. Taken together, our results provide new insights in the mechanisms and the variety of cells contributing to the course of GvHD. An improved understanding of these aspects might help to pave the way for new treatment options to overcome current limitations of allogenic HSCT. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-03
    Description: Ibrutinib (IBR) is a small molecule inhibitor of Bruton's Tyrosine Kinase, a key component of the BCR pathway. In phase II studies of single-agent IBR in CLL and MCL, the overall response rate was 89% and 68% respectively. However, only a minority of responses were complete and few are durable, suggesting that drug combinations will be required to achieve broader and more durable responses. In a previous report from our laboratory, Venetoclax (VEN) (GDC-0199; ABT-199), an inhibitor of the anti-apoptotic protein BCL2, showed synergistic cytotoxicity with IBR in MCL cell lines (Axelrod M et al, Leukemia 2014). A clinical trial testing this combination for MCL patients is now open (NCT02419560). Here, we sought to investigate the cytotoxic effects of the IBR and VEN combination in CLL and MCL patient samples and the mechanisms of resistance to drug treatment that might be expected to occur in the tissue microenvironment of these malignancies in patients. Peripheral blood mononuclear cells (PBMCs) from CLL/MCL patients containing circulating neoplastic B cells were incubated with IBR (0.1 μM), VEN (25 nM), and the combination of IBR and VEN for different time intervals. Cytotoxicity following drug treatment was determined by FACS analysis of cleaved PARP in CD5/CD19 double positive cells (Portell CA et al ASH 2014) and loss of CD5/CD19 double positive cells (i.e., neoplastic B cells). Cytotoxicity induced by IBR was variable, but was invariably enhanced by the addition of VEN. In a cohort of CLL and MCL patient samples that were treated (n=14), eleven patients showed synergistic cytotoxicity following treatment with IBR and VEN as evaluated by the Bliss model of independence. Recognizing that CLL and MCL cells populate replication centers (pseudofollicles) of the tissue microenvironment such as lymph node and bone marrow, we attempted to emulate a pseudofollicle in vitro by co-culturing or pre-incubating PBMC with agonistic components of that microenvironment. We screened several cytokines, other agonistic proteins, and supporting cells, including stromal cells (HS-5 cell line), follicular dendritic cells (HK cell line), soluble CD40L, CxCL13, IL-10, IL-2, CpG oligodeoxynucleotides (CpG ODN), BAFF, or IgM. A 12 h pre-incubation with soluble CD40L, IL-10, or CpG ODN generated significant levels of resistance to IBR and VEN. Moreover, the combination of soluble CD40L, IL-10, and CpG ODN resulted in nearly complete resistance to the IBR-VEN combination in cells from three CLL patient samples. The resistance was not overcome by increasing concentrations of IBR up to 10 μM, suggesting that resistance is not due to upregulation of BTK. To gain insight into the mechanism(s) of resistance and ways to overcome it, CLL patient PBMC pre-treated with soluble CD40L, IL-10, and CpG ODN were treated in three-way combination with IBR, VEN and inhibitors of potential resistance pathways known to be downstream from the tested ligands. These included small molecule inhibitors of IKKα and IKKβ, JAK1, 2, and 3, MAP Kinase, or PI3Kδ as well as the anti-apoptotic proteins MCL1, BCL-xL, or Survivin. Cytotoxicity was evaluated with an alamarBlue® assay. The NF-kB, JAK-STAT, PI3Kδ, and anti-apoptotic protein inhibitors all exhibited synergistic interactions with the IBR-VEN combination, as well as substantial cytotoxicity as single agents at higher doses. Inhibitors of the MAP Kinase pathway were ineffective. Taken together our data are consistent with the hypothesis that resistance to IBR, VEN and the combination in patients with CLL or MCL could arise by NF-kB, JAK-STAT, or PI3K signaling from CD40, IL10R and Toll-like receptors. In conclusion, IBR and VEN induced synergistic cytotoxicity in a majority of CLL and MCL patient samples. An in vitro model of the pseudofollicle microenvironment provided protection against cytotoxicity of IBR and VEN, suggesting that the tissue microenvironment provides a niche that supports drug resistance. This resistance was overcome by inhibition of NF-kB, JAK-STAT, or PI3Kδ, or the anti-apoptotic proteins MCL1, BCL-xL, or Survivin. Disclosures Off Label Use: Ibrutinib and Venitoclax drug combination. This drug combination was used in this study to evaluate cytotoxicity in CLL and MCL ex vivo patient samples. . Portell:AbbVie: Research Funding. Williams:Genentech: Other: Research funding to my institution; Celgene: Consultancy, Other: Research funding to my institution; Takeda: Consultancy, Other: Research Funding to my institution. Petricoin:Theranostics Health: Consultancy, Equity Ownership, Patents & Royalties.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-03-12
    Description: Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype–specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell–like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-29
    Description: Responses to single-agent ibrutinib (IBR) or venetoclax (VEN) in Chronic Lymphocytic Leukemia (CLL) or Mantle Cell Lymphoma (MCL) are often incomplete suggesting drug combinations are needed to overcome de novo and acquired resistance. We previously reported synergistic cytotoxicity for the IBR+VEN combination in CLL/MCL cells ex vivo and have initiated an IBR+VEN clinical trial in MCL (NCT02419560). However, ex vivo analysis of patient samples showed de novo resistance even to the IBR+VEN combination in some samples, consistent with recent clinical experience (Tam et al. N Engl J Med, 2018). We noted that sensitivity to IBR+VEN was lower in CLL cells showing an "activation" phenotype (CD5+/19+/69+) that can be induced by extracellular factors in vivo, suggesting that the microenvironment could induce drug tolerance in the cancer cells.This was supported by our finding that ex vivo exposure of CLL/MCL samples to a mixture of microenvironmental agonists (CpG-ODN, sCD40L, and IL10; "agonist mix") induced significant loss of sensitivity to IBR+VEN (Jayappa et al. Blood Adv., 2017). Here we show that various microenvironmental agonists, including of innate immunity, are able to reduce sensitivity to IBR+VEN as well as other pro-apoptotic drugs, generating a multi-drug tolerant phenotype. To explore drug tolerance, we performed flow cytometric analysis of apoptosis induced by IBR+VEN in CD5+/19+cancer cells in CLL/MCL PBMCs cultured with agonists of TLRs, NOD1/2, CD40, and IL10R and various stromal cells. Tolerance to IBR+VEN as determined by resistance to apoptosis was noted in most samples cultured with TLR9 agonist CpG-ODN, sCD40L, or Jurkat cells expressing CD40L. IL10 and HUVEC induced modest levels of drug tolerance in a few CLL/MCL samples, and TLR1/2, TLR7, and NOD1/2 agonists were effective only in MCL samples. Prior exposure to CpG-ODN enhanced the ability of sCD40L to induce proliferation and drug tolerance and vice versa in CLL/MCL, predicting mutually reinforcing interactions in vivo. We noted that CLL cells exposed to CpG-ODN displayed higher levels of CD40 and downstream signaling proteins (TRAF2, RelB, and p100/52). Conversely, CD40L induced a modest increase in NF-kB transcription factors, providing a possible mechanism for mutual reinforcement. Using flow cytometric analysis of apoptosis, we noted tolerance to several pro-apoptotic agents (bendamustine, fludarabine, and inhibitors of Mcl-1, Bcl-xL, Bcl-2, and Bcl-2/Bcl-xL) including IBR+VEN in CD5+/19+cells from CLL samples treated with agonist mix, showing development of multi-drug tolerance in these cells. CpG-ODN or agonist mix induced NFkB-dependent over-expression of pro-survival proteins (Mcl-1 and Bcl-xL), and increased ratio of these to cognate pro-apoptotic proteins. This increased expression of pro-survival proteins underlies the multi-drug tolerant phenotype. Consistently, multi-drug tolerance was rescued with inhibitors of NFkB (BMS345541 or Bortezomib) or drug combinations simultaneously inhibiting multiple anti-apoptotic proteins (inhibition of Mcl-1 with Bcl-2, Bcl-xL, or Bcl-2 and Bcl-xL). CLL cells with activation phenotype (CD5+/19+/69+) in patient PBMCs cultured without the agonist mix also showed tolerance to several apoptotic protein inhibitors ex vivo, and this was also effectively rescued with NF-kB inhibition or combination of apoptotic protein inhibitors ex vivo. These results suggest that the cancer cells with activation phenotype exist in vivo anddisplay multi-drug tolerant phenotype consistent with the drug tolerance induced by agonist mix ex vivo. In conclusion, several microenvironmental factors, particularly agonists of TLR9 and CD40, induce tolerance to IBR+VEN and cell proliferation in CLL/MCL, and response to these agonists is enhanced by combinatorial exposure. These agonists generate tolerance to several apoptosis-inducing agents beyond IBR+VEN. This microenvironment-induced multi-drug tolerance is mediated by NFkB dependent over-expression of multiple pro-survival proteins. Inhibitors of NFkB, or drug combinations targeting multiple pro-survival proteins, overcame multi-drug tolerance in agonist mix-treated samples and in CD69+CLL cells in patient PBMCs that represent multi-drug tolerant cells in vivo. Thus, more complete and durable responses might be achieved in MCL/CLL with therapies that target multi-drug tolerant persister cells. Disclosures Williams: Celgene: Consultancy, Research Funding; Kite: Consultancy; Juno: Consultancy; Seattle Genetics: Consultancy; Gilead: Consultancy, Research Funding; Novartis: Research Funding; TG Therapeutics: Consultancy; Sandoz: Consultancy; Astra-Zeneca: Consultancy; Abbvie: Consultancy; Takeda: Research Funding; Pharmacyclics: Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Verastem: Consultancy. Portell:AbbVie: Research Funding; Infinity: Research Funding; Genentech/Roche: Consultancy, Research Funding; Acerta: Research Funding; BeiGene: Research Funding; Kite: Research Funding; Amgen: Consultancy; TG therapeutics: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-02
    Description: Ibrutinib (IBR), an inhibitor of Bruton's Tyrosine Kinase (BTK), has been FDA approved for Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL). However, IBR responses are incomplete in most cases, and of short duration for MCL and higher-risk CLL subtypes. We hypothesize that intrinsic resistance, incomplete responses, and rapid recurrence can be due to adaptive signaling that should be co-targeted with BTK inhibition to achieve deeper and more durable responses. We previously showed that venetoclax (VEN), an inhibitor of Bcl-2, generated synergistic cytotoxicity with IBR in MCL lines as well as circulating leukemic B cells in 13/19 CLL and 4/5 MCL patient samples treated ex vivo (Jayappa KD et al. ASH 2015; Portell CA et al. ASH 2014). However, the sensitivity to VEN or IBR+VEN was highly variable among patient samples, and did not correlate with the diagnostic genetic lesions in the CLL/MCL cells or clinical characteristics of the patients. Here, we show that resistance to IBR+VEN can be induced by interaction with soluble factors found in the in vivo "macroenvironment" of the circulating cancer cells. To gain insight into changes in signaling pathways that might underlie mechanisms of drug synergy and resistance, we analyzed drug resistant MCL lines treated with IBR, VEN, and the combination by Reverse Phase Protein Arrays. We observed downregulation of PI3K-Akt, MAPK, JAK-STAT, and NOTCH signaling after IBR and IBR+VEN treatment, cleavage of caspases and PARP after VEN-treatment, and greatly enhanced cleavage of caspases and PARP after IBR+VEN treatment. A notable exception was significantly increased phosphorylation on p65 S536 of the NF-kB pathway at longer times after IBR+VEN treatment, indicating a possible role of NF-kB signalling in generating resistance to IBR and VEN in cells that survived treatment. To determine whether extrinsic factors in the cancer cell environment might be able to induce a drug-resistant phenotype, we co-cultured or pre-incubated PBMC with a diverse panel of stromal cells, cytokines, and other agonists. We found that the combination of soluble CD40L, IL-10, and CpG DNA (agonist mix) generated nearly complete resistance to IBR+VEN in CLL and MCL patient samples, with CpG DNA being the most effective single agent. Every sample treated with agonist mix displayed increased resistance to IBR+VEN drug combination, suggesting that responsiveness transcends genetic heterogeneity and reflects the developmental lineage of the cancer cells. We investigated whether the extrinsic agonists induce drug resistance by activating the NF-κB pathway, by analyzing nuclear localization of NF-kB transcription factors RelA and RelB using ImageStream and cell fractionation. We observed robust activation of alternative-NF-kB signaling in primary CLL and MCL cells treated with agonist mix, with little effect on canonical NF-κB. PKC, MAPK and PI3K-Akt signaling also showed evidence of activation by agonist mix. Agonist mix treatment also caused significant overexpression of anti-apoptotic proteins Mcl-1, Bcl-xL, and survivin, but not Bcl-2. Inhibitors of NF-κB blocked RelB translocation and overexpression of Mcl-1, Bcl-xL and survivin. Inhibitors of NF-kB or of upregulated anti-apoptotic proteins overcame drug resistance induced by agonist mix. Inhibitors of the other activated pathways (MAPK, PI3K-Akt, PKC) did not block agonist-induced drug resistance at pharmacologically relevant concentrations. To determine whether extra-nodal agonists in the blood of patients could generate resistance to IBR and VEN, we analyzed drug cytotoxicity in CLL patient PBMCs cultured with autologous plasma. We found that autologous plasma was able to induce increased resistance to IBR+VEN in 3/7 CLL samples and this resistance was blocked by treatment with an NF-kB inhibitor. In conclusion, soluble agonists in the patient macroenvironment of circulating CLL/MCL cells can generate resistance to IBR+VEN by activating alternative-NF-kB signaling and over-expression of multiple anti-apoptotic proteins. Inhibitors of NF-kB or of the upregulated anti-apoptotic proteins overcame IBR+VEN resistance generated by these extrinsic factors. We suggest that survival signals generated by extra-nodal agonists in the patient macroenvironment generate drug resistance in CLL and MCL, and that improved responses could occur with interventions that block these survival signals. Disclosures Portell: AbbVie: Research Funding; Roche/Genentech: Research Funding; Infinity: Research Funding; Acerta: Research Funding. Wulfkuhle:Theranostics Health, LLC: Equity Ownership. Petricoin:Perthera, Inc.: Consultancy, Equity Ownership; Ceres Nanosciences, Inc.: Consultancy, Equity Ownership, Patents & Royalties; Avant Diagnostics, Inc.: Equity Ownership. Williams:University of Virginia: Employment; Janssen and Pharmacyclics: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-02
    Description: Introduction Mantle cell lymphoma (MCL) which relapses or becomes refractory to frontline chemotherapy can be a clinical challenge. There have been several targeted agents approved in relapsed MCL including bortezomib, lenalidomide and ibrutinib (IBR) with the best single-agent responses seen with IBR. IBR is an oral, Bruton tyrosine kinase (BTK) inhibitor which has an overall response rate (ORR) of 67% with a median duration of response of 17.5 months in relapsed MCL (Wang, Blood 2015). While these responses are impressive in this population, only 1/3 of patients will have a complete response and only 1/3 of responding patients will have a 24 month PFS. Thus, improvements are needed. Venetoclax (VEN) is an oral selective BCL2 inhibitor which is currently FDA approved in relapsed 17p-deleted chronic lymphocytic leukemia. We and others have shown synergistic cytotoxicity with VEN and IBR (Axelrod Leukemia 2014) which prompted us to explore the combination in a Phase I/Ib clinical trial (clinicaltrials.gov ID: NCT02419560). This study was supported by a grant from AbbVie Inc. Methods Given overlapping toxicities with VEN and IBR, namely neutropenia and GI toxicities, potential for drug-drug interactions given both are metabolized by CYP3A, and a wide range of therapeutic dosing for the two drugs, a dose finding study is appropriate. A continual-reassessment model was designed to test six dosing strategies (table 1). Subjects start treatment with single agent VEN at 100mg PO daily and increase to the allocated dose per table 1. After 1 week of VEN, subjects start the allocated dose of IBR. Subjects are monitored closely for tumor lysis syndrome (TLS) and hospitalized for TLS monitoring when starting IBR. Subjects are treated with the combination for 6 months and are encouraged to continue IBR after that time. The study enrolls in 2 stages. In the first stage, subjects are enrolled one at a time to sequential arms. Up to 2 subjects are allowed on each arm in a zone before enrollment in the zone is paused. Subsequent zones are enrolled once at least one subject in every arm of the zone does not have a DLT during the DLT window. The second stage begins when a subject has a DLT or all arms have enrolled at least 1 subject. In the second stage, subsequent subjects are allocated to an arm based on DLT's and ORR at 2 months occurring in prior patients on the study, thus the study aims to find the optimal dosing combination of IBR and VEN for both toxicity and response. Enrollment will continue until 10 subjects are allocated to an arm or 28 total subjects are enrolled. Eligible patients must have documented relapsed MCL after at least 1 line of chemotherapy. Subjects must not have bulky disease, no evidence of TLS, and must not have been previously treated with IBR. Results Enrollment began 10/2015 and at the time of submission, we have treated 8 subjects and have finished stage I of the study. Subjects were enrolled on arms A to E. Mean age is 63 years (range 49-81). 7 of the 8 subjects are male. 5 subjects were refractory to their prior treatment and 3 subjects have progressed after an autologous bone marrow transplant. Seven of the 8 subjects are evaluable for adverse events. 5 subjects have completed the 6-week DLT window. There have been 15 related adverse events reported with 14 of these being grade 1 or 2. No TLS has been reported. One DLT at arm E was identified (grade 4 neutropenia) which prompted us to move to stage II of the study. Three subjects (arm A, B, and C) are evaluable for response with all achieving at least a partial response. One subject on arm C, had a complete response at 4 months of the combination. Conclusion: Early results suggest tolerability for the combination of IBR and VEN in Relapsed MCL. There have been no signs of TLS, though subjects with high risk for TLS are excluded. One DLT (neutropenia) has been reported in Arm E and thus modeling will start to find the optimal combination using both toxicity and response. Responses have been seen across the various treatment arms. Continual re-assessment modeling is an adequate study design for combination studies with targeted agents to identify optimal dosing, accounting for both toxicity and response. Disclosures Portell: Infinity: Research Funding; Roche/Genentech: Research Funding; Acerta: Research Funding; AbbVie: Research Funding. Chen:Seattle Genetics: Consultancy, Honoraria, Research Funding, Speakers Bureau; Millenium: Consultancy, Research Funding, Speakers Bureau; Genentech: Consultancy, Speakers Bureau; Merck: Consultancy, Research Funding. Cohen:Millennium/Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Infinity: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kahl:Seattle Genetics: Consultancy; Celgene: Consultancy; Infinity: Consultancy; Gilead: Consultancy; Juno: Consultancy; Pharmacyclics: Consultancy. Williams:Jansen: Research Funding; Pharmacyclics: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-29
    Description: Ibrutinib (IBR), an inhibitor of Bruton's Tyrosine Kinase (Btk) and venetoclax (VEN), an inhibitor of Bcl-2 have been used in Chronic Lymphocytic Leukemia (CLL), but single agent responses to these drugs are often incomplete and not durable. We previously reported synergistic cytotoxicity for the IBR+VEN combination and have initiated a trial to test that combination (NCT02419560). However, we noted extensive variability in response to IBR+VEN between patient samples ex vivo, suggesting intrinsic tolerance even to this combination. CLL cells with an "activation" phenotype (CD5+/19+/69+) that occurs from interactions with the microenvironment were less sensitive to IBR+VEN, implicating the cancer microenvironment as an inducer of drug tolerance. This was supported by our finding that CLL cells display decreased sensitivity to IBR+VEN in co-culture with agonists and cells that emulate the cancer cell microenvironment. The combination of CpG-oligodeoxynucleotides (ODN), sCD40L, and IL10 ("agonist mix") induced near complete loss of sensitivity to IBR+VEN and upregulated Mcl-1 and Bcl-xL expression in CLL cells. However, Mcl-1 or Bcl-xL inhibitors alone were weakly effective in these cells, suggesting that exploitation of these targets requires drug combinations. Here we report a combination drug screen with an Mcl-1 inhibitor in a CLL microenvironment model ex vivo and novel drug combinations that overcome multi-drug tolerance. CLL patient PBMCs were cultured in the microenvironment model consisting of HK follicular dendritic cells, HUVEC, Jurkat T cells expressing CD40L, and CpG-ODN. Markers characteristic of activation and drug tolerance in vivo were assessed in CLL (CD5+/19+) cells using flow cytometry. We found increased expression of Ki67, CD69, and anti-apoptotic proteins Mcl-1 and Bcl-xL and decreased CXCR4 expression, as expected upon microenvironmental stimuli in vivo.Also, CLL cells from 2 IBR-treated patients were still responsive to agonist-induced drug tolerance, suggesting Btk inhibition may be less effective in blocking these microenvironmental stimuli in vivo. By comparing the ratio of anti-apoptotic proteins with cognate pro-apoptotic proteins, we noted targetable dependence of CLL cells for diverse pro-survival proteins (Mcl-1 and Bcl-xL) in our model. Flow cytometry analysis demonstrated that inhibitors of Mcl-1 (S63845), Bcl-xL (A1155643), or Bcl-2 (VEN) when used as single agents failed to induce significant apoptosis in CLL cells cultured in our model, suggesting induction of multi-drug tolerance. Drug combinations inhibiting Mcl-1 with Bcl-xL, Bcl-2, or Bcl-xL and Bcl-2 have effectively overcome multi-drug tolerance. As direct and simultaneous inhibition of multiple pro-survival proteins could be fatal to healthy cells, we carried out a Mcl-1-anchored combinatorial drug screen with inhibitors of other survival pathways in 3 CLL patient PBMCs cultured in our ex vivo model to identify drug combination(s) that induce selective toxicity in multi-drug tolerant CLL cells. Cytotoxicity was determined by analyzing cleaved PARP and dead cell staining in CLL and healthy T (CD3+/5+) cells by flow cytometry. Results showed that inhibitors of apoptotic proteins (A1155643, VEN, ABT737), IRAK4 (CA-4948, compound 26, and AS2444697), intracellular TLRs (chloroquine), Hsp90 (ganetespib), CDK (ribociclib), proteasome (bortezomib), Btk (IBR), AKT (MK2206), and HDAC (SAHA and panobinostat) or activator of PP2A (DBK1532 and NZ8061) were synergistically toxic with Mcl-1 inhibitor (S63845) in CLL cells. By comparing toxicity in CLL and healthy T cells, drug combinations targeting Mcl-1 with proteasome, IRAK4, TLRs, Btk, Hsp90, and CDK showed selective toxicity in CLL cells, indicating a potential therapeutic window for these combinations. Drug combinations targeting Mcl-1 with other apoptotic proteins were highly toxic to healthy T cells. In conclusion, CLL cells in our ex vivo model display characteristics of microenvironmentally-induced multi-drug tolerance. A similar phenotype was noted using post IBR therapy samples, suggesting IBR alone may not be effective in overcoming this multi-drug tolerance in vivo. Drug combinations targeting Mcl-1 and proteasome, IRAK4, TLRs, Btk, Hsp90, or CDK selectively overcame multi-drug tolerance in CLL cells. Thus, these combinations may be effective in patients showing intrinsic tolerance to multiple drugs. Disclosures Portell: TG therapeutics: Research Funding; AbbVie: Research Funding; Infinity: Research Funding; Genentech/Roche: Consultancy, Research Funding; Acerta: Research Funding; BeiGene: Research Funding; Kite: Research Funding; Amgen: Consultancy. Narla:University of Michigan: Patents & Royalties: Small molecule PP2A activators. Williams:Takeda: Research Funding; TG Therapeutics: Consultancy; Seattle Genetics: Consultancy; Verastem: Consultancy; Juno: Consultancy; Sandoz: Consultancy; Celgene: Consultancy, Research Funding; Novartis: Research Funding; Astra-Zeneca: Consultancy; Abbvie: Consultancy; Pharmacyclics: Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Kite: Consultancy; Gilead: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-06
    Description: Von Willebrand factor (VWF) is secreted as an acute phase protein during inflammation. The main mechanism regulating the size and prothrombotic activity of VWF is the specific proteolytic activity of ADAMTS-13. To determine the relevance of this regulatory pathway for the innate inflammatory response by polymorphonuclear neutrophils (PMN), we employed a mouse model of invasive pulmonary aspergillosis (IPA) where PMN functionality is crucial for fungal clearance and survival. IPA was induced by intratracheal application of Aspergillus fumigatus conidia in wild-type (129/Sv/Pas) or Adamts13 deficient (Adamts13-/-) mice. After PMN depletion using a anti-Gr-1 specific antibody, all mice infected with Aspergillus fumigatus conidia developed neutropenia and succumbed due to lethal IPA. In contrast, all undepleted wild-type mice survived the infection. Interestingly, Aspergillus fumigatus infection in Adamts13-/- mice was lethal in 20% of the animals displaying a more severe course of IPA, as indicated by an increased fungal burden in lung homogenates along with increased levels of albumin and the inflammatory mediators IL-1β, IL-6, TNF-α, KC and MCP-1 in the bronchio-alveolar lavage fluid (BALF) compared to wild-type controls. Beyond this, we observed a decreased number of PMN in BALF of infected Adamts13-/- mice compared to wild-type mice. Lung histology sections demonstrated a more pronounced perivascular leukocyte infiltration in further support of a dysregulated inflammatory response in Adamts13-/- mice. Importantly, we observed no general defect in the activation of neutrophil effector functions as demonstrated by the normal induction of the oxidative burst, phagocytosis, degranulation, L-selectin shedding and apoptosis in response to formyl-peptide receptor agonists or exposure to Aspergillus fumigatus conidia or hyphae in vitro. Therefore, we conclude that the proteolytic regulation of VWF by ADAMTS-13 in an important mechanism to control PMN recruitment in the regulation of the innate inflammatory response in invasive fungal infections. Disclosures Radsak: Celgene: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-06
    Description: Bruton tyrosine kinase (BTK) is critical to both normal B-cell development and the pathogenesis of B-cell malignancies. Ibrutinib is a recently FDA-approved small molecule irreversible inhibitor of BTK. In Phase II studies of single-agent ibrutinib in MCL (Wang ML et al, NEJM 2013) and CLL (Byrd JC, et al, NEJM 2013) the overall response rate was 68% and 89% (CR, PR, and PR with lymphocytosis), respectively, with PR as the best response in the majority of patients. Thus, not all patients respond and complete responses are infrequent with single agent ibrutinib. We previously reported that the BCL2 inhibitor, ABT-199, and the proteasome inhibitor, carfilzomib, were highly synergistic with ibrutinib in MCL cell lines using a focused drug panel (Axelrod M et al, Leukemia 2014). We sought to confirm these findings in MCL and CLL patient samples and to determine the mechanisms of synergy. Peripheral blood buffy coat samples from patients with circulating tumor cells were exposed to ibrutinib, ABT-199, carfilzomib and the combinations of ibrutinib and ABT-199 and ibrutinib and carfilzomib at pharmacologically-achievable doses for 72 hours. Apoptosis was assessed using PARP cleavage by FACS analysis of CD3-, CD5+, CD19+ cells representing the neoplastic clones. The combination of Ibrutinib and ABT-199 substantially induced apoptosis compared to each single agent alone (combo: 23%, ibrutinib: 3.8%, ABT-199: 3.0%). Ibrutinib plus carfilzomib also substantially induced apoptosis compared to each single agent alone (combo: 5.5%, Ibrutinib 3.8%, carfilzomib 1.7%) though to a less degree than the ABT-199 combination. The normal B-cell population (CD3-, CD5-, CD19+) in these samples was too small for analysis, thus normal T-cells (CD3+, CD5+, CD19-) from the same patients were used to identify the effects on normal lymphocytes. Minimal apoptosis was seen in normal T-cells with the single agents or the combinations. In a cohort of CLL and normal donor samples, heterogeneity in response to the combination of ibrutinib and ABT-199 was seen. When evaluated by Bliss modeling, 5 of 9 CLL samples had a synergistic improvement in apoptosis with the combination with the other 4 having no change. No increased apoptosis was seen in two tested peripheral blood lymphocyte (CD3-, CD5-, CD19+) populations from healthy donors. Gene expression profiling with Illumina Bead Chip array was used to evaluate the mechanisms of synergy with ABT-199 plus ibrutinib after 6 hours of drug exposure. The MCL cell line JVM2 was exposed to pharmacologically-achievable doses of ibrutinib, ABT-199 and combinations of each dose. Ibrutinib alone induced transcriptional change whereas ABT-199 did little to change gene expression. The combination induced both potentiative transcriptional changes (changes present in isolation and enhanced by the combination) and emergent transcriptional changes (changes only seen with the combination, unchanged by each single agent). Protein-protein interaction networks generated using the drug targets (BTK and BCL2) and emergent genes as input to STRING revealed activation of apoptosis via p53 and BIM as mechanisms of synergy. In conclusion, Ibrutinib and ABT-199 induce synergistic apoptosis in MCL cell lines and leukemic patient samples. The combination also induced apoptosis in some, but not all, CLL patient samples. No apoptosis was seen with either drug or the combination in normal T-cells from patients, suggesting little off-target effect. Emergent changes were seen when combining ABT-199 with ibrutinib in MCL cell lines. These changes suggest activation of p53 and BIM as potential mechanisms of synergy. A clinical trial with ABT-199 and ibrutinib is planned. Disclosures Off Label Use: Pre-clinical data with ABT-199 for MCL and CLL, not FDA approved. Williams:Pharmacyclics, Janssen: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-05
    Description: The advent of molecularly targeted therapies has revolutionized the treatment of Non-Hodgkin's Lymphoma (NHL), including Chronic Lymphocytic Leukemia (CLL). Venetoclax (VEN, an inhibitor of Bcl-2) and ibrutinib (IBR, an inhibitor of BTK) generated excellent clinical responses in CLL patients singly and even more effectively in combination (Portell et al. Blood, 2019; Tam et al.NEJM, 2018). Despite its efficacy, the majority of VEN or VEN+IBR responses are partial and resistance usually develops. We previously reported that treatment with microenvironmental agonists ex vivo can generate anti-apoptotic resistance to the VEN+IBR combination in CLL cells via NF-kB-dependent upregulation of multiple anti-apoptotic proteins (Mcl-1 and Bcl-xL) (Jayappa et al. Blood Adv, 2017). Here, we report that circulating CLL cells of lymph node origin (CD69positive) exhibit resistance to several BH-domain antagonists (inhibitors of Bcl-2, Mcl-1, and Bcl-xL) when used as single agents. Apoptosis resistance was shown to occur at a pre-mitochondrial level by insufficient activation of Bax/Bak proteins (Fig. 1A-B). Supportive of these findings, ex vivo treatment of primary CLL cells with agonists (sCD40L, TLR9 agonist CpG-ODN, and IL10) known to be expressed in the cancer microenvironment in vivoalso resulted in apoptosis restriction due to defective Bax/Bak activation. Our molecular studies suggest that this resistance is driven by the upregulation of anti-apoptotic proteins, which generates an intracellular environment in which single-drug treatments allow pro-apoptotic proteins (e.g. Bim) to swap between upregulated anti-apoptotic proteins (Mcl-1/Bcl-xL/Bcl-2), leading to defective Bax/Bak activation. Hence, therapies aimed at depleting this reservoir must block multiple anti-apoptotic proteins simultaneously or bypass Bax/Bak-dependent apoptosis. Several cancers, including NHL, have evolved mechanisms to suppress the activity of Protein Phosphatase 2A (PP2A), a serine/threonine phosphatase known to regulate cell survival/proliferation. In our current study involving various cancer cell lines (~250), a small molecule agonist of PP2A (SMAP, TRC-382) showed broad activity across blood cancer cell lines. A further pharmacologically optimized SMAP compound (DT061), also known to be safe in animal models (Tohmé et al. JCI Insight, 2019), was effective even in blood cancer cell lines and agonist treated CLL samples resistant to several BH-domain antagonists (inhibitors on Mcl-1, Bcl-xL, and Bcl-2), suggesting that PP2A activation could overcome pre-mitochondrial apoptosis restriction. DT061 was able to overcome drug resistance in patient-derived CD69positive CLL cells through the induction of Bax/Bak-independent apoptosis (Fig. 1C). Supportive of this finding, DT061 was also able to induce apoptosis in Bax/Bak double knockout CLL cell line (MEC1) (Fig. 1D). To determine the mechanisms underlying SMAP-induced apoptosis, we examined additional pathways capable of triggering apoptosis such as mitochondrial permeability transition pore (MPTP), calcium channels, and VDAC1 using selected small molecule inhibitors. Only inhibitors blocking MPTP (NIM811 or cyclopsorin-A/CspA) significantly impaired the DT061- but not VEN-induced apoptosis in primary CLL cells (Fig. 2A-B). Additionally, our analysis using the CalceinAM/CoCl2 method revealed that DT061 was able to induce MPTP opening in primary CLL cells, which was inhibited in the presence of NIM811 or CspA, suggesting that DT061 induces apoptosis through MPTP activation (Fig. 2C). In summary, we identify, in the circulation of treatment-naïve and treated CLL patients, microenvironmentally-activated leukemic B cells that exhibit apoptosis resistance at the level of Bax/Bak activation. Therapies aimed at depleting this reservoir of drug-resistant leukemic B cells must trigger a process of Bax/Bak independent apoptosis. We demonstrate that PP2A activation using the SMAP (DT061) induces apoptosis in drug resistant CLL cells bypassing the Bax/Bak pathway. The apoptosis induction was dependent on MPTP activation. Collectively, this work highlights the existence of an anti-apoptotic multi-drug resistant pool of CLL cells in patients, and validates a novel pharmaceutically tractable pathway to deplete this reservoir. Disclosures Williams: Janssen: Research Funding; Pharmacyclics: Research Funding; TG Therapuetics: Research Funding; Celgene: Honoraria; Gilead: Honoraria; TG Therapeutics: Honoraria; Abbvie: Honoraria; Kite: Honoraria; Xian Janssen: Honoraria. Portell:Xencor: Research Funding; Roche/Genentech: Consultancy, Research Funding; Infinity: Research Funding; TG Therapeutics: Research Funding; AbbVie: Research Funding; Pharmacyclics: Consultancy; Janssen: Consultancy; Amgen: Consultancy; Bayer: Consultancy; BeiGene: Consultancy, Research Funding; Kite: Consultancy, Research Funding; Acerta/AstraZeneca: Research Funding. Narla:The Icahn School of Medicine at Mount Sinai: Patents & Royalties: nternational Application Numbers: PCT/US15/19770, PCT/US15/19764; and US Patent: US 9,540,358 B2; Mount Sinai: Other: Mount Sinai is actively seeking commercial partners for the further development of the technology. G.N. has a financial interest in the commercialization of the technology.; RAPPTA Therapeutics: Consultancy, Current equity holder in private company.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...