ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1993-10-01
    Description: Transplantation of a granulocytosis-inducing murine CE mammary carcinoma into mice suppresses primary B lymphopoiesis in the marrow. The mechanisms of this tumor-induced B-cell suppression were investigated using Whitlock-Witte-type lymphoid cultures. When seeded with normal marrow progenitors, stromal cells of tumor-bearing mice supported the production of B220+ cells as well as did either stomal cells derived from control mice or the stromal cell line S17. Cultured over normal stroma, marrow cells of tumor-bearing mice depleted of adherent cells and B220+ cells generated B220+ cells as effectively as a similar cell population from control mice. However, interleukin-7- responsive progenitors, were completely depleted from the marrow of tumor-bearing mice. When conditioned medium (CM) of cloned CE tumor cells known to produce granulocyte colony-stimulating factor (G-CSF) and macrophage-CSF, or recombinant murine G-CSF was added to the cultures established with S17 cells, B220+ cell production was significantly diminished. Antiserum to murine G-CSF blocked these effects. These in vitro observations were corroborated by the elimination of marrow B220+ cells in mice injected with G-CSF. These in vitro and in vivo studies suggest that G-CSF plays an inhibitory role in primary B lymphopoiesis by blocking stromal cell-mediated differentiation of early B-cell progenitors into phenotypically recognizable B220+ pre-B cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-06-15
    Description: Human immunodeficiency syndrome (HIV) infection leads to a progressive loss of T-cell-mediated immunity associated with T-cell apoptosis. We report here that CD4+ and CD8+ T cells from HIV-1-infected persons are sensitive to Fas (CD95/APO-1)-mediated death induced either by an agonistic anti-Fas antibody or by the physiologic soluble Fas ligand, although showing no sensitivity to tumor necrosis factor alpha-induced death. CD4+ and CD8+ T-cell apoptosis induced by Fas ligation was enhanced by inhibitors of protein synthesis and was prevented either by a soluble Fas receptor decoy or an antagonistic anti-Fas antibody. Fas- mediated apoptosis could also be prevented in a CD4+ or CD8+ T-cell- type manner (1) by several protease antagonists, suggesting the involvement of the interleukin-1beta (IL-1beta)-converting enzyme (ICE)- related cysteine protease in CD4+ T-cell death and of both a CPP32- related cysteine protease and a calpain protease in CD8+ T-cell death; and (2) by three cytokines, IL-2, IL-12, and IL-10, that exerted their effects through a mechanism that required de novo protein synthesis. Finally, T-cell receptor (TCR)-induced apoptosis of CD4+ T cells from HIV-infected persons involved a Fas-mediated death process, whereas TCR stimulation of CD8+ T cells led to a different Fas-independent death process. These findings suggest that Fas-mediated T-cell death is involved in acquired immunodeficiency syndrome (AIDS) pathogenesis and that modulation of Fas-mediated signaling may represent a target for new therapeutic strategies aimed at the prevention of CD4+ T-cell death in AIDS.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-01-01
    Description: Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein hormone that specifically stimulates both production and functional activation of neutrophils, while interferon-alpha (IFN-alpha) is known to suppress myelopoiesis, including neutrophil production in vivo and in vitro. On a possibility that IFN-alpha may operate as one of the inhibitory feedback factors in neutropoiesis, we examined whether neutrophils produce IFN-alpha in response to G-CSF. Northern blot analysis showed that messenger RNA (mRNA) for human IFN-alpha 1 became detectable time- dependently in highly purified human neutrophils incubated with purified recombinant human G-CSF (rhG-CSF). But such transcription was not observed either in neutrophils incubated with other neutrophil activators, such as formyl-methionyl-leucyl-phenylalanine (fMLP) or lipopolysaccharides (LPS), or in blood mononuclear cells incubated with rhG-CSF. In addition, radioimmunoassay for human IFN-alpha showed that its levels in culture medium of the rhG-CSF-treated neutrophils rose markedly (up to approximately 100 IU/mL/1 x 10(7) cells) in a time- dependent way, compared with those of nonstimulated neutrophils. These findings suggest that the G-CSF/IFN-alpha system may participate in the feedback regulatory loop of neutropoiesis.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-05-15
    Description: To understand the etiology of bone modulation and hypercalcemia observed in granulocytosis of a tumor-bearing animal model and to gain insight into the implication of sustained hematopoietic stimulation on the bone tissue, in vivo responses of normal mouse hematopoietic and bone tissues to long-term injections of recombinant human and murine granulocyte colony-stimulating factor (G-CSF), murine granulocyte- macrophage CSF (GM-CSF), and human erythropoietin were quantitatively analyzed. Osteoclast activation was estimated by the osteoclast- endosteal ratio, determined by morphometric analyses of femoral sections. Medullary and bone areas were measured on transverse ground bone sections of the tibia. Recombinant murine G-CSF provoked marked granulocytosis associated with significant increases in the number of marrow granulocytes and their progenitors, and caused expansion of granulopoietic marrow into fatty marrow. The bone of G-CSF-treated mice showed a significant increase in endosteal osteoclast numbers with medullary area enlargement and a reduction in the bone thickness; indicative of endosteal bone resorption. Although GM-CSF had little effect on granulopoiesis, it caused peritoneal macrophages to increase and induced similar bone changes as those observed in G-CSF treatment. Enhanced erythropoiesis stimulated by erythropoietin was also associated with evidence of endosteal bone resorption. Bone changes induced by these growth factors were not associated with hypercalcemia. These animal studies document association of bone modulation in sustained stimulation of hematopoiesis, and implicate important physiologic effects of hematopoietic growth factors on skeletal tissue in vivo.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-09-01
    Description: A fibroblast-mediated gene delivery method was used for the endogenous expression of human granulocyte colony-stimulating factor (G-CSF) as a model for cytokine supplement therapy. Human G-CSF cDNA was inserted into the plasmid expression vector BMGNeo, which contains a partial sequence of bovine papilloma virus and a selectable marker gene. The recombinant plasmid (BMGNeo-GCSF) was transfected into NIH/3T3 fibroblasts by the calcium phosphate coprecipitation method, and the stably transformed cells were isolated by G418 selection. An appropriate clone producing a large amount of G-CSF was selected by enzyme immunoassay of the culture supernatants. Southern blot analysis suggested that the BMGNeo-GCSF plasmid replicated mainly as an episome, and Northern blot analysis demonstrated the high expression of human G- CSF mRNA in the cells. After the implantation of the G-CSF-producing fibroblasts into nude mice, prominent neutrophilia, about 30-fold the level of normal control, was observed within seven days. Moreover, the number of hematopoietic progenitor cells in spleen remarkably increased for all cell lineages in these mice. To regulate the in vivo expression of G-CSF, we designed a subcutaneous diffusion chamber apparatus that contains the G-CSF-producing fibroblasts. The leukocytosis (neutrophilia) induced in C3H mice after embedding the device quickly disappeared after ethanol treatment of the chamber. Furthermore, reinjection of the G-CSF-producing fibroblasts into the chamber caused a second neutrophilia.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-05-15
    Description: To understand the etiology of bone modulation and hypercalcemia observed in granulocytosis of a tumor-bearing animal model and to gain insight into the implication of sustained hematopoietic stimulation on the bone tissue, in vivo responses of normal mouse hematopoietic and bone tissues to long-term injections of recombinant human and murine granulocyte colony-stimulating factor (G-CSF), murine granulocyte- macrophage CSF (GM-CSF), and human erythropoietin were quantitatively analyzed. Osteoclast activation was estimated by the osteoclast- endosteal ratio, determined by morphometric analyses of femoral sections. Medullary and bone areas were measured on transverse ground bone sections of the tibia. Recombinant murine G-CSF provoked marked granulocytosis associated with significant increases in the number of marrow granulocytes and their progenitors, and caused expansion of granulopoietic marrow into fatty marrow. The bone of G-CSF-treated mice showed a significant increase in endosteal osteoclast numbers with medullary area enlargement and a reduction in the bone thickness; indicative of endosteal bone resorption. Although GM-CSF had little effect on granulopoiesis, it caused peritoneal macrophages to increase and induced similar bone changes as those observed in G-CSF treatment. Enhanced erythropoiesis stimulated by erythropoietin was also associated with evidence of endosteal bone resorption. Bone changes induced by these growth factors were not associated with hypercalcemia. These animal studies document association of bone modulation in sustained stimulation of hematopoiesis, and implicate important physiologic effects of hematopoietic growth factors on skeletal tissue in vivo.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-09-01
    Description: A fibroblast-mediated gene delivery method was used for the endogenous expression of human granulocyte colony-stimulating factor (G-CSF) as a model for cytokine supplement therapy. Human G-CSF cDNA was inserted into the plasmid expression vector BMGNeo, which contains a partial sequence of bovine papilloma virus and a selectable marker gene. The recombinant plasmid (BMGNeo-GCSF) was transfected into NIH/3T3 fibroblasts by the calcium phosphate coprecipitation method, and the stably transformed cells were isolated by G418 selection. An appropriate clone producing a large amount of G-CSF was selected by enzyme immunoassay of the culture supernatants. Southern blot analysis suggested that the BMGNeo-GCSF plasmid replicated mainly as an episome, and Northern blot analysis demonstrated the high expression of human G- CSF mRNA in the cells. After the implantation of the G-CSF-producing fibroblasts into nude mice, prominent neutrophilia, about 30-fold the level of normal control, was observed within seven days. Moreover, the number of hematopoietic progenitor cells in spleen remarkably increased for all cell lineages in these mice. To regulate the in vivo expression of G-CSF, we designed a subcutaneous diffusion chamber apparatus that contains the G-CSF-producing fibroblasts. The leukocytosis (neutrophilia) induced in C3H mice after embedding the device quickly disappeared after ethanol treatment of the chamber. Furthermore, reinjection of the G-CSF-producing fibroblasts into the chamber caused a second neutrophilia.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-01-01
    Description: Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein hormone that specifically stimulates both production and functional activation of neutrophils, while interferon-alpha (IFN-alpha) is known to suppress myelopoiesis, including neutrophil production in vivo and in vitro. On a possibility that IFN-alpha may operate as one of the inhibitory feedback factors in neutropoiesis, we examined whether neutrophils produce IFN-alpha in response to G-CSF. Northern blot analysis showed that messenger RNA (mRNA) for human IFN-alpha 1 became detectable time- dependently in highly purified human neutrophils incubated with purified recombinant human G-CSF (rhG-CSF). But such transcription was not observed either in neutrophils incubated with other neutrophil activators, such as formyl-methionyl-leucyl-phenylalanine (fMLP) or lipopolysaccharides (LPS), or in blood mononuclear cells incubated with rhG-CSF. In addition, radioimmunoassay for human IFN-alpha showed that its levels in culture medium of the rhG-CSF-treated neutrophils rose markedly (up to approximately 100 IU/mL/1 x 10(7) cells) in a time- dependent way, compared with those of nonstimulated neutrophils. These findings suggest that the G-CSF/IFN-alpha system may participate in the feedback regulatory loop of neutropoiesis.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-10-01
    Description: Transplantation of a granulocytosis-inducing murine CE mammary carcinoma into mice suppresses primary B lymphopoiesis in the marrow. The mechanisms of this tumor-induced B-cell suppression were investigated using Whitlock-Witte-type lymphoid cultures. When seeded with normal marrow progenitors, stromal cells of tumor-bearing mice supported the production of B220+ cells as well as did either stomal cells derived from control mice or the stromal cell line S17. Cultured over normal stroma, marrow cells of tumor-bearing mice depleted of adherent cells and B220+ cells generated B220+ cells as effectively as a similar cell population from control mice. However, interleukin-7- responsive progenitors, were completely depleted from the marrow of tumor-bearing mice. When conditioned medium (CM) of cloned CE tumor cells known to produce granulocyte colony-stimulating factor (G-CSF) and macrophage-CSF, or recombinant murine G-CSF was added to the cultures established with S17 cells, B220+ cell production was significantly diminished. Antiserum to murine G-CSF blocked these effects. These in vitro observations were corroborated by the elimination of marrow B220+ cells in mice injected with G-CSF. These in vitro and in vivo studies suggest that G-CSF plays an inhibitory role in primary B lymphopoiesis by blocking stromal cell-mediated differentiation of early B-cell progenitors into phenotypically recognizable B220+ pre-B cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...