ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-02-01
    Description: We investigated the expression profiles of lacto-series type 2 antigens in hematopoietic cells and their progenitors, in comparison with leukemic leukocytes. Reactivity profiles of various anti-type 2 chain monoclonal antibodies (MoAbs) with leukemic blasts from 12 patients with acute myeloblastic leukemia (AML) and those from two patients with acute unclassified leukemia (AUL) show that anti-sialosyl-Le(x) MoAb SNH3 reacted strongly with greater than 95% of leukemic blast leukocyte populations from all patients (14 of 14). Another anti-sialosyl-Le(x) MoAb, FH6, showed less reactivity than SNH3 (12 of 14 patients), while anti-Le(y) MoAb AH6 showed reactivity with only 8 of 14 patients. On the other hand, none of the anti-type 2 chain MoAbs reacted with CD34+ normal adult bone marrow (BM) mononuclear cells obtained independently from three healthy volunteers. MoAb SNH3, but not FH6 or AH6, showed complement-mediated cytotoxicity to leukemic blasts from these patients, as well as to myelogenous leukemia cell line HL60. Colony- forming unit granulocyte-macrophage (CFU-GM), but not burst-forming unit-erythroid (BFU-E), was incompletely inhibited by treatment of normal BM mononuclear cells with SNH3 and complement. The absence of type 2 chain antigen expression in hematopoietic progenitor cells and in in vitro hematopoietic colonies (CFU-GM and BFU-E) strongly suggests that application of anti-carbohydrate MoAbs, particularly anti-sialosyl- Le(x) could be useful for elimination of leukemic myeloblasts infiltrating in BM, for purging of leukemic blasts in BM, and for facilitation of autologous BM.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1984-08-01
    Description: Changes of glycosphingolipids (GSLs) in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60 cells were investigated by high-performance thin-layer chromatography (HPTLC), with special reference to morphological and functional changes, such as phagocytosis and nitroblue tetrazolium (NBT) reduction. Nine molecular species of neutral GSLs and 13 or more species of sialo-GSLs, ie, gangliosides, were detected on the HPTLC chromatograms for untreated HL-60 cells. The major components were ceramide dihexoside (CDH), GM3, and sialo-paragloboside (SPG). When HL- 60 cells were induced to differentiate into both myeloid mature cells and macrophage-like cells in vitro, no new molecular species of GSLs specific for one of the cell differentiations was induced, but distinctive quantitative changes in the GSL composition were definitely observed between the two cell differentiations. During the myeloid differentiation induced by either dimethylsulfoxide (DMSO) or retinoic acid (RA), CDH, paragloboside (PG), and gangliosides having longer sugar moieties characteristically increased with a concomitant decrease of GSLs with shorter sugar chains, such as ceramide monohexoside (CMH) and GM3, and the GSL composition profile of myeloid differentiation- induced HL-60 cells became more similar to that of normal human granulocytes. However, some marked differences were noted between the induced HL-60 cells and the normal granulocytes, especially in the ganglioside compositions. These differences might reflect either some deficiency in the in vitro myeloid differentiation or some leukemic properties of HL-60 cells. In marked contrast to the change of GSL composition during myeloid differentiation, a remarkable increase of GM3, with a concurrent marked decrease of CDH, was observed in the process of cell differentiation into macrophage-like cells with 12-O- tetradecanoyl-phorbol-13-acetate (TPA), which suggested an increase in the biosynthesis of GM3. These results demonstrate that HL-60 cells express distinct GSL profiles, depending not only on maturation stages but also on differentiation directions.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-08-01
    Description: Changes in the composition and metabolism of glycosphingolipid (GSL), which is one of the cell surface constituents, during cell differentiation of human T-lymphoblastic leukemia cell line MOLT-3 cells were examined with special reference to their alterations in E rosette-forming capacity and expression of surface antigens specific for T-cell lineage. Three molecular species of neutral GSL and greater than or equal to 13 molecular species of acidic sialosyl-GSL (ganglioside) were detectable on high-performance thin-layer chromatography (HPTLC) in untreated MOLT-3 cells. The major components were ceramide monohexoside and gangliosides GM3 and GD1a. When the cells were induced by 12-O-tetradecanoyl phorbol 13-acetate (TPA) to differentiate into more mature T cells, the ganglioside composition changed distinctively, and the total ganglioside content increased considerably; mono-, di-, and tri-sialosyl gangliosides concomitantly showed significant increase, but no new molecular species of GSL specific for the differentiation were detected. The activity of one sialyltransferases, CMP-sialic acid:CDH sialyltransferase, which synthesizes ganglioside GM3 and the total sialic acid content of the cell surface, parallelled the extent of cell differentiation. Examination of another human T-lymphoblastic leukemia cell line, HPB- ALL, indicated that TPA could also induce the cells to differentiate along T-cell lineage and that changes in the ganglioside pattern during differentiation are similar to those of MOLT-3 cells. The results indicate that human T-lymphoid cell differentiation intimately involves elongation of neutral oligosaccharide-moieties and the addition of sialic acid residues to gangliosides, resulting in more mature T cells containing higher gangliosides. Both the sialyltransferase activity and the sialic acid content, as well as the ganglioside pattern, might be new biochemical markers specific for human T-lymphoblastic cell differentiation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-08-01
    Description: Changes of glycosphingolipids (GSLs) in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60 cells were investigated by high-performance thin-layer chromatography (HPTLC), with special reference to morphological and functional changes, such as phagocytosis and nitroblue tetrazolium (NBT) reduction. Nine molecular species of neutral GSLs and 13 or more species of sialo-GSLs, ie, gangliosides, were detected on the HPTLC chromatograms for untreated HL-60 cells. The major components were ceramide dihexoside (CDH), GM3, and sialo-paragloboside (SPG). When HL- 60 cells were induced to differentiate into both myeloid mature cells and macrophage-like cells in vitro, no new molecular species of GSLs specific for one of the cell differentiations was induced, but distinctive quantitative changes in the GSL composition were definitely observed between the two cell differentiations. During the myeloid differentiation induced by either dimethylsulfoxide (DMSO) or retinoic acid (RA), CDH, paragloboside (PG), and gangliosides having longer sugar moieties characteristically increased with a concomitant decrease of GSLs with shorter sugar chains, such as ceramide monohexoside (CMH) and GM3, and the GSL composition profile of myeloid differentiation- induced HL-60 cells became more similar to that of normal human granulocytes. However, some marked differences were noted between the induced HL-60 cells and the normal granulocytes, especially in the ganglioside compositions. These differences might reflect either some deficiency in the in vitro myeloid differentiation or some leukemic properties of HL-60 cells. In marked contrast to the change of GSL composition during myeloid differentiation, a remarkable increase of GM3, with a concurrent marked decrease of CDH, was observed in the process of cell differentiation into macrophage-like cells with 12-O- tetradecanoyl-phorbol-13-acetate (TPA), which suggested an increase in the biosynthesis of GM3. These results demonstrate that HL-60 cells express distinct GSL profiles, depending not only on maturation stages but also on differentiation directions.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-08-01
    Description: Changes in the composition and metabolism of glycosphingolipid (GSL), which is one of the cell surface constituents, during cell differentiation of human T-lymphoblastic leukemia cell line MOLT-3 cells were examined with special reference to their alterations in E rosette-forming capacity and expression of surface antigens specific for T-cell lineage. Three molecular species of neutral GSL and greater than or equal to 13 molecular species of acidic sialosyl-GSL (ganglioside) were detectable on high-performance thin-layer chromatography (HPTLC) in untreated MOLT-3 cells. The major components were ceramide monohexoside and gangliosides GM3 and GD1a. When the cells were induced by 12-O-tetradecanoyl phorbol 13-acetate (TPA) to differentiate into more mature T cells, the ganglioside composition changed distinctively, and the total ganglioside content increased considerably; mono-, di-, and tri-sialosyl gangliosides concomitantly showed significant increase, but no new molecular species of GSL specific for the differentiation were detected. The activity of one sialyltransferases, CMP-sialic acid:CDH sialyltransferase, which synthesizes ganglioside GM3 and the total sialic acid content of the cell surface, parallelled the extent of cell differentiation. Examination of another human T-lymphoblastic leukemia cell line, HPB- ALL, indicated that TPA could also induce the cells to differentiate along T-cell lineage and that changes in the ganglioside pattern during differentiation are similar to those of MOLT-3 cells. The results indicate that human T-lymphoid cell differentiation intimately involves elongation of neutral oligosaccharide-moieties and the addition of sialic acid residues to gangliosides, resulting in more mature T cells containing higher gangliosides. Both the sialyltransferase activity and the sialic acid content, as well as the ganglioside pattern, might be new biochemical markers specific for human T-lymphoblastic cell differentiation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1994-01-01
    Description: The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from “Tn syndrome.” We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B- cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B- lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-01-01
    Description: The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from “Tn syndrome.” We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B- cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B- lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-02-01
    Description: We investigated the expression profiles of lacto-series type 2 antigens in hematopoietic cells and their progenitors, in comparison with leukemic leukocytes. Reactivity profiles of various anti-type 2 chain monoclonal antibodies (MoAbs) with leukemic blasts from 12 patients with acute myeloblastic leukemia (AML) and those from two patients with acute unclassified leukemia (AUL) show that anti-sialosyl-Le(x) MoAb SNH3 reacted strongly with greater than 95% of leukemic blast leukocyte populations from all patients (14 of 14). Another anti-sialosyl-Le(x) MoAb, FH6, showed less reactivity than SNH3 (12 of 14 patients), while anti-Le(y) MoAb AH6 showed reactivity with only 8 of 14 patients. On the other hand, none of the anti-type 2 chain MoAbs reacted with CD34+ normal adult bone marrow (BM) mononuclear cells obtained independently from three healthy volunteers. MoAb SNH3, but not FH6 or AH6, showed complement-mediated cytotoxicity to leukemic blasts from these patients, as well as to myelogenous leukemia cell line HL60. Colony- forming unit granulocyte-macrophage (CFU-GM), but not burst-forming unit-erythroid (BFU-E), was incompletely inhibited by treatment of normal BM mononuclear cells with SNH3 and complement. The absence of type 2 chain antigen expression in hematopoietic progenitor cells and in in vitro hematopoietic colonies (CFU-GM and BFU-E) strongly suggests that application of anti-carbohydrate MoAbs, particularly anti-sialosyl- Le(x) could be useful for elimination of leukemic myeloblasts infiltrating in BM, for purging of leukemic blasts in BM, and for facilitation of autologous BM.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...