ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2015-12-03
    Description: Introduction: Hepatic iron concentration (HIC) is used as a surrogate for total iron balance to guide chelation therapy in transfusion-dependent and independent patients. Unfortunately, liver biopsy is invasive and provides only indirect information regarding other organ systems. FerriScanprovides an accurate validated measurement of liver iron concentration (LIC) through a non-invasive, using patented R2-MRI imaging technology. Aim: To determine the iron status of 11 patients with non-transfusion dependent (NT) patients with sickle cell disease (SCD). Patients and methods: FerriScan (a quick, easy and painless, with an MRI scan time of only two minutes) is used to determine LIC in eleven adults with NT-SCD. Serum ferritin, iron concentrations and hepatic enzymes (ALT and AST) concentrations and total iron binding capacity (TIBC) were measured. Results: 11 adults with NT-SCD were studied. Three had serum ferritin 〉 500 umol/L , 2 out of the three (ferritin level 1138 and 531 ug/L) had high liver iron measured by ferriScan (〉 30 mmol/kg dry tissue). One patient had high liver iron content despite a concomitant serum ferritin concentration = 237 ug/L. On the other hand a patient had serum ferritin = 1117 ug/L while his liver iron was still (27 mmol/kg dry tissue) in the normal range. Serum ferritin concentrations were correlated significantly with liver iron content measured by ferriScan (r = 0.47, p = 0.05). (fig) Three patients had elevated liver enzymes (ALT and AST). Neither serum ferritin, nor LIC was correlated significantly with hepatic function. Discussion: In this study significant number of patients with ND-SCD had high LIC and high serum ferritin and hepatic enzymes (ALT and AST). Elevated levels of LIC and ferritin impose high risk for hepatic disease and cardiac toxicity in these patients. Evidence suggests that patients with high LIC have higher risk of liver fibrosis and cirrhosis as a result of iron overload. In addition, Liver iron concentration (LIC) over 15.0 mg Fe/g dry weight is associated with increased risk of cardiac diseases. Moreover, the liver is considered the early warning system against later endocrine complications, due to iron overload. For NT-SCD, with increased LIC, effective management of liver iron concentration is critical to ensure risk of morbidity due to iron overload is minimized Summary: This is the first study that document increased iron overload in NT-SCD patients. Therefore, we recommend measuring serum ferritin and LIC in NT-SCD patients. Those with increased LIC and/or ferritin should be chelated to prevent long term complications of iron overload.Table.Ageserum FeTIBCFerritinliver ironALTASTyrumol/Lumol/Lug/Lmmol/kgU/LU/L32.323.755.7361.731.024.236.114.217.78.4405.717.716.422.3 Disclosures Nashwan: HMC MRC: Research Funding. Moustafa:HMC MRC: Research Funding. Elomry:HMC MRC: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-02
    Description: Almost 16,000 iron exposures annually are reported in children less than six years of age in the United States. Deferoxamine is the iron-chelating agent of choice. Deferoxamine binds absorbed iron, and the iron-deferoxamine complex is excreted in the urine. Indications for treatment include shock, altered mental status, persistent GI symptoms, metabolic acidosis, pills visible on radiographs, serum iron level greater than 500 µg/dL, or estimated dose greater than 60 mg/kg of elemental iron. No clear end point of therapy is distinguished. Infusion of deferoxamine for 6-12 hours has been suggested for moderate toxicity. For severe toxicity, administer deferoxamine for 24 hours. Because these end points are arbitrary, observe the patient for the recurrence of toxicity 2-3 hours after the deferoxamine has been stopped. Complications of iron toxicity include the following: Infection with Yersinia enterocolitica, acute respiratory distress syndrome (ARDS) and fulminant hepatic failure, hepatic cirrhosis, pyloric or duodenal stenosis. Systemic toxicity is expected with an ingestion of 60 mg/kg. Ingestion of more than 250 mg/kg of elemental iron is potentially lethal. Although a low serum ferritin is an accurate measure of iron deficiency, there is no accurate serum or plasma marker for acute body-iron overload. Serum iron concentration and transferrin saturation do not quantitatively reflect body iron. Stores and should therefore not be used as surrogate markers of tissue iron overload. Liver iron concentration provides the best measure of total body iron stores and is a validated predictor of the risks a particular patient faces from the complications of iron toxicity. Several imaging noninvasive techniques are available for measuring liver iron concentration (LIC) . There are two validated MRI methods for quantitating the liver iron burden: the FerriScan and T2 methods. The noninvasive R2-MRI technique (FerriScan) is highly sensitive and specific for estimating LIC and is approved by the Food and Drug Administration for routine clinical use. However, it was not used to diagnose and monitor LIC in cases of acute iron intoxication. This 27 year old female nurse by profession self-referred to hematology clinic for evaluation of Iron overload after self injecting herself with 20 ampoules of IV iron Ferro sac (each ampoule containing 200 mg of iron, (4000 mg elemental iron, 60 mg/kg) . Her CBC on presentation showed Hb of 12.5 g/dl her baseline Hb 9 g/dl with serum iron of 28 (NR 9.0 - 30.4 umol/L) ,TIBC of 42 NR(45 - 80 umol/L ), ferritin 1001 (NR 24-336 mcg/l) Her clinical exam was unremarkable. Her MRI showed severe iron overload. 9 mg /g dray tissue (NR 0.17-1.8) Patient received chelation with deferasirox at dose of 30 mg /kg for 6 months when her ferriscan showed almost normal LIC of 2 mg /g dry tissue. This case report showed the value of ferriscan in diagnosing the degree of tissue iron overload and in monitoring chelation to a safe level of hepatic iron content. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...