ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (4)
  • 1
    Publication Date: 1993-12-01
    Description: To clarify the phenotypes of various classes of human hematopoietic progenitor cells, we used a multicolor staining protocol in conjunction with CD34 and a newly developed mouse antihuman c-kit proto-oncogene product (KIT) monoclonal antibody (MoAb). We characterized three cell fractions in CD34+ cells that express KITlow and KIThigh cells in addition to KIT- cells. A clonogenic assay showed that most granulocyte- macrophage colony-forming cells (GM-CFC) were present in CD34+KIThigh populations, whereas erythroid burst-forming cells (BFU-E) were detected mainly in the CD34+KITlow population. CD34(+)-KIT- fraction contained a small number of BFU-E. Morphologic analysis showed that blast-like cells were more enriched in the CD34+KITlow fraction. KITlow cells contained CD34+CD38- cells that were considered to be very primitive progenitor cells, as determined by a replating assay. To clarify the biologic differences between both fractions, we examined the more primitive progenitor cell functions by assessing long-term culture-initiating cells (LTC-IC) on the stromal cells. At week 2, more CFC recovered from the culture in the fraction initiated with a CD34+KIThigh population. However, more LTC-IC were present during weeks 5 to 9 in the CD34+KITlow population. These results indicate that primitive progenitors are more enriched in the KITlow population and that the KIThigh population contains many GM-committed progenitor cells. We also showed that anti-KIT MoAb inhibited the ability of CD34+ cells to generate CFC on the stromal layer in the LTC system. This suppressive effect was more evident in the generation of BFU-E by CD34+KITlow cells. Moreover, we confirmed that CD34+KIThigh cells emerged from CD34+KITlow cells during coculture with allogeneic stromal cells or from liquid culture in the presence of stem cell factor (SCF), interleukin-6, and erythropoietin. These results emphasize the pivotal role of the KIT and SCF interaction in hematopoiesis and indicate that KITlow cells are more primitive than KIThigh cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-07-15
    Description: Advances in fluorescence-activated cell sorter technology have brought about multicolor analysis of cell phenotypes. To clarify the phenotypes of human hematopoietic stem cells (HSCs), we initially prepared novel antibodies against CD34 and labeled one of them (4A1) with allophycocyanin (APC). With this, we analyzed the phenotypes of CD34+ HSCs and showed that primitive HSCs or CD34+CD33- cells expressed adhesion molecules such as CD43, CD44, CD11a, CD11c, CD18, and leukocyte adhesion molecule (LAM-1). The more primitive hematopoietic cells or CD34+CD38- cells also expressed CD11a and CD18 with an incidence of 20% to 30%. To clarify the role of adhesion molecules in HSCs, we examined the colony forming capacity after long-term culture with allogeneic irradiated stromal layers. Among CD34+CD33- cells, CD18+ cells gave rise to colony-forming cells (CFCs) on stromal layers, but reached a maximum at week 2, after which the number of generated CFCs decreased. On the other hand, CD18- cells generated less CFCs than CD18+ cells at 2 to 3 weeks, but increased after 4 weeks of culture. When CD18 or CD11a antibody was added to a coculture system of CD34+CD33- cells with stromal layers, the number of generated CFCs decreased significantly compared with the no antibody control. Leukocyte function-associated antigen-1 (LFA-1) (CD11a/CD18) was expressed on some populations of hematopoietic cells and contributed to the proliferation by interacting with stromal cells. However, more primitive cells capable of reconstituting hematopoiesis did not express LFA-1. These data provide a rationale for the administration of anti- LFA-1 antibody after bone marrow transplantation for reducing the graft failure.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-07-15
    Description: Advances in fluorescence-activated cell sorter technology have brought about multicolor analysis of cell phenotypes. To clarify the phenotypes of human hematopoietic stem cells (HSCs), we initially prepared novel antibodies against CD34 and labeled one of them (4A1) with allophycocyanin (APC). With this, we analyzed the phenotypes of CD34+ HSCs and showed that primitive HSCs or CD34+CD33- cells expressed adhesion molecules such as CD43, CD44, CD11a, CD11c, CD18, and leukocyte adhesion molecule (LAM-1). The more primitive hematopoietic cells or CD34+CD38- cells also expressed CD11a and CD18 with an incidence of 20% to 30%. To clarify the role of adhesion molecules in HSCs, we examined the colony forming capacity after long-term culture with allogeneic irradiated stromal layers. Among CD34+CD33- cells, CD18+ cells gave rise to colony-forming cells (CFCs) on stromal layers, but reached a maximum at week 2, after which the number of generated CFCs decreased. On the other hand, CD18- cells generated less CFCs than CD18+ cells at 2 to 3 weeks, but increased after 4 weeks of culture. When CD18 or CD11a antibody was added to a coculture system of CD34+CD33- cells with stromal layers, the number of generated CFCs decreased significantly compared with the no antibody control. Leukocyte function-associated antigen-1 (LFA-1) (CD11a/CD18) was expressed on some populations of hematopoietic cells and contributed to the proliferation by interacting with stromal cells. However, more primitive cells capable of reconstituting hematopoiesis did not express LFA-1. These data provide a rationale for the administration of anti- LFA-1 antibody after bone marrow transplantation for reducing the graft failure.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-12-01
    Description: To clarify the phenotypes of various classes of human hematopoietic progenitor cells, we used a multicolor staining protocol in conjunction with CD34 and a newly developed mouse antihuman c-kit proto-oncogene product (KIT) monoclonal antibody (MoAb). We characterized three cell fractions in CD34+ cells that express KITlow and KIThigh cells in addition to KIT- cells. A clonogenic assay showed that most granulocyte- macrophage colony-forming cells (GM-CFC) were present in CD34+KIThigh populations, whereas erythroid burst-forming cells (BFU-E) were detected mainly in the CD34+KITlow population. CD34(+)-KIT- fraction contained a small number of BFU-E. Morphologic analysis showed that blast-like cells were more enriched in the CD34+KITlow fraction. KITlow cells contained CD34+CD38- cells that were considered to be very primitive progenitor cells, as determined by a replating assay. To clarify the biologic differences between both fractions, we examined the more primitive progenitor cell functions by assessing long-term culture-initiating cells (LTC-IC) on the stromal cells. At week 2, more CFC recovered from the culture in the fraction initiated with a CD34+KIThigh population. However, more LTC-IC were present during weeks 5 to 9 in the CD34+KITlow population. These results indicate that primitive progenitors are more enriched in the KITlow population and that the KIThigh population contains many GM-committed progenitor cells. We also showed that anti-KIT MoAb inhibited the ability of CD34+ cells to generate CFC on the stromal layer in the LTC system. This suppressive effect was more evident in the generation of BFU-E by CD34+KITlow cells. Moreover, we confirmed that CD34+KIThigh cells emerged from CD34+KITlow cells during coculture with allogeneic stromal cells or from liquid culture in the presence of stem cell factor (SCF), interleukin-6, and erythropoietin. These results emphasize the pivotal role of the KIT and SCF interaction in hematopoiesis and indicate that KITlow cells are more primitive than KIThigh cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...