ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-16
    Description: Hepcidin, a 25-amino acid peptide hormone, is the principal regulator of plasma iron concentrations in a wide range of organisms, from humans to fish. The hepcidin receptor is the iron channel ferroportin (Fpn), which exports iron from duodenal enterocytes, macrophages and hepatocytes into plasma. Hepcidin binding to Fpn results in internalization and degradation of the ligand-receptor complex and reduced iron efflux from cells into plasma. Abnormal production of hepcidin or abnormal interaction with Fpn causes a spectrum of iron disorders. We analyzed the nature of the interaction and critical structural features of hepcidin and Fpn. The binding of hepcidin to Fpn showed an unusual temperature dependence, with loss of binding/internalization at temperatures lower that 15C. To establish whether initiation of internalization stabilized binding, we used Fpn mutated at Tyr302 and Tyr303, which does not internalize and showed that the mutant was still able to bind 125I-hepcidin, with a similar EC50 and temperature dependence as wt Fpn. We next addressed Fpn structural features required for interaction with hepcidin. Several Fpn mutations in humans cause a phenotype consistent with resistance to hepcidin. We thus generated Fpn plasmids carrying the specific human mutations, transiently transfected cells with the mutants, and measured 125I-hepcidin binding to cells. The results showed that thiol form of Cys326 is essential for hepcidin binding since substitution of this Cys with Ser or Thr preserved the iron exporting function of Fpn but resulted in a complete loss of hepcidin binding, as did the treatment of cells with non-permeable sulfhydryl alkylating agents. The essential role of the C326 residue in hepcidin binding accounts for the early and severe iron overload in patients with C326S or Y substitution. We also showed that the N-terminus of hepcidin is essential for its binding to Fpn. The sequential truncation of five N-terminal residues resulted in a gradual reduction in activity. Ala scanning of the N-terminus showed that Phe4 and Ile6 substitutions resulted in 〉80% and 50% decrease in binding respectively. To understand the requirements for biological activity at position 4, we tested a series of Phe4 analogues. Substitution with a similar hydrophobic residue, cyclohexylalanine, had no effect on activity; substitution with polar Tyr caused a 50% reduction in activity; substitution with charged residues Lys or Asp resulted in a complete loss of activity, as did substitution with D-Phe. The results indicated that position 4 requires a bulky hydrophobic residue and that the interaction with Fpn is stereospecific. Similarly, substitution of Ile at position 6 with charged residues caused a complete loss of activity. Understanding the molecular framework responsible for hepcidin-Fpn interaction will facilitate the development of drug leads for a range of iron disorders.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-15
    Description: Fragments from the extracellular matrix proteins laminin and osteopontin and a sequence from VEGF have potent proangiogenic activity despite their small size (〈 10 residues). However, these linear peptides have limited potential as drug candidates for therapeutic angiogenesis because of their poor stability. In the present study, we show that the therapeutic potential of these peptides can be significantly improved by “grafting” them into cyclic peptide scaffolds. Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II) and sunflower trypsin inhibitor-1 (SFTI-1), naturally occurring, plant-derived cyclic peptides of 34 and 14 residues, respectively, were used as scaffolds in this study. Using this approach, we have designed a peptide that, in contrast to the small peptide fragments, is stable in human serum and at nanomolar concentration induces angiogenesis in vivo. This is the first report of using these scaffolds to improve the activity and stability of angiogenic peptide sequences and is a promising approach for promoting angiogenesis for therapeutic uses.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...