ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-01-01
    Description: A Rhesus D (RhD) red blood cell phenotype with a weak expression of the D antigen occurs in 0.2% to 1% of whites and is called weak D, formerly Du. Red blood cells of weak D phenotype have a much reduced number of presumably complete D antigens that were repeatedly reported to carry the amino acid sequence of the regular RhD protein. The molecular cause of weak D was unknown. To evaluate the molecular cause of weak D, we devised a method to sequence all 10RHD exons. Among weak D samples, we found a total of 16 different molecular weak D types plus two alleles characteristic of partial D. The amino acid substitutions of weak D types were located in intracellular and transmembraneous protein segments and clustered in four regions of the protein (amino acid positions 2 to 13, around 149, 179 to 225, and 267 to 397). Based on sequencing, polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction using sequence-specific priming, none of 161 weak D samples investigated showed a normal RHD exon sequence. We concluded, that in contrast to the current published dogma most, if not all, weak D phenotypes carry altered RhD proteins, suggesting a causal relationship. Our results showed means to specifically detect and to classify weak D. The genotyping of weak D may guide Rhesus negative transfusion policy for such molecular weak D types that were prone to develop anti-D.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-03-15
    Description: Rhesus D category VI (DVI) is the clinically most important partial D. DVI red blood cells were assumed to possess very low RhD antigen density and to be caused by twoRHD-CE-D hybrid alleles. Because there was no population-based work-up, we screened three populations in central Europe for DVI. Twenty-six DVI samples were detected and examined by exon-specific RHD polymerase chain reaction with sequence-specific primers (PCR-SSP). A new genotype, hereby designated D category VI type III, was characterized as a RHD-Ce(3-6)-D hybrid allele by sequencing of the cDNA, parts of intron 1, and by PCR-restriction fragment length polymorphism (PCR-RFLP) of intron 2. Rhesus introns 5 and 6 were sequenced and the 3′ breakpoints of all knownDVItypes shown to be distinct. We differentiated the 5′ breakpoints of DVItypeI andDVItype II by a newly devised RHD-PCR. Thus, the DVI phenotype originated in at least three independent molecular events. Each DVI type showed distinct immunohematologic features in flow cytometry. The number of RhD proteins accessible on the red blood cells' surface ofDVItype III was normal (about 12,000 antigens/cell; DVItypeI, 500;DVItype II, 2,400) based on the determination of an RhD epitope density profile. DVItype II and DVItype III occurred as CDe haplotypes, and DVItype I as a cDE haplotype.The distribution of the DVItypes varied significantly in three German-speaking populations. Genotyping strategies should take account of allelic variations in partial RhD. The reconsideration of previous serologic and clinical data for partial D in view of the underlying molecular structures may be worthwhile.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-01-01
    Description: A Rhesus D (RhD) red blood cell phenotype with a weak expression of the D antigen occurs in 0.2% to 1% of whites and is called weak D, formerly Du. Red blood cells of weak D phenotype have a much reduced number of presumably complete D antigens that were repeatedly reported to carry the amino acid sequence of the regular RhD protein. The molecular cause of weak D was unknown. To evaluate the molecular cause of weak D, we devised a method to sequence all 10RHD exons. Among weak D samples, we found a total of 16 different molecular weak D types plus two alleles characteristic of partial D. The amino acid substitutions of weak D types were located in intracellular and transmembraneous protein segments and clustered in four regions of the protein (amino acid positions 2 to 13, around 149, 179 to 225, and 267 to 397). Based on sequencing, polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction using sequence-specific priming, none of 161 weak D samples investigated showed a normal RHD exon sequence. We concluded, that in contrast to the current published dogma most, if not all, weak D phenotypes carry altered RhD proteins, suggesting a causal relationship. Our results showed means to specifically detect and to classify weak D. The genotyping of weak D may guide Rhesus negative transfusion policy for such molecular weak D types that were prone to develop anti-D.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-11-16
    Description: Antigen D compatible transfusion is standard practice in modern transfusion therapy, warranting proper antigen D typing in all blood donors. Blood group genotyping is increasingly utilized for prenatal diagnosis and after recent transfusions. RHD genotyping is of practical importance to overcome the limitations of standard serology, which frequently fails to detect some weak D and chimeric red blood cell (RBC) populations, and to enhance clinical safety for blood transfusion recipients. Recently, the transfusions of blood units from chimeric donors were reported to having induced an acute transfusion reaction and multiple anti-D immunizations. The latter donor escaped the serologic detection in 13 donations but was uncovered by the strategy reported in this study. Since January 2002 all D negative (D neg.) first time donors at blood center A were tested for carrying the RHD gene. We evaluated the results of this two years’ routine testing and compared them to a screening study conducted in the independent blood center B. This approach contributed to define the utility of RHD genotyping for the quality control of D neg. RBC units. In two independent blood centers we examined 9,931 and 5,115 serologic D neg. blood donors. Samples were tested in pools of 20 donors by PCR-SSP for RHD intron 4 or for RHD exon 4, exon 7 and exon 10. 21 RHD positive donors were detected in center A and 18 RHD positive donors in center B among the serologic D neg. donors. The molecular bases of the RHD positive samples were resolved in all cases. A total of 10 RHD alleles were novel: RHD(T201R, F223V, P291R) dubbed weak D type 4.3, RHD(I374N) dubbed weak D type 32, RHD(del147), RHD(del343), RHD(del449), RHD(del785), RHD(L153P), RHD(Y269X), RHD(IVS3+2T〉A) and RHcE(1–3)-D(4–10). 13 samples in center A represented 5 known RHD alleles, most often RHDψ (n = 5), RHD(IVS3+1G〉A) (n = 4) and RHD(M295I) in CDe (n = 2); 7 samples in center B represented the 3 known RHD alleles RHD(IVS3+1G〉A) (n = 4), RHD-CE(2–9)-D2 (n = 2) and RHD(M295I) (n = 1). 9 donors in center A represented Del; in center B 9 were weak D and 6 Del; 13 of the remaining donors were confirmed to be D neg. despite carrying the RHD gene. We concluded that RHD genotyping of serologic D neg. donors at two facilities revealed carriers of the RHD gene expressing antigen D, albeit at low levels, in the range of up to 1:1,000 and 1:350 donors, respectively. At least 24 donors carried RHD alleles that were known or shown to express a weak D or Del phenotype. The RBC units donated by these donors may be capable of causing at least secondary anti-D immunization. This possible adverse clinical outcome was avoided by RHD genotyping each donor only once. Use of RHD genotyping would obviate the need to tightly control the sensitivity of serologic anti-D testing in blood donors. Further studies are needed to corroborate the current experience in particular in donors of non-white ethnic background. However, we think that RHD genotyping in first time blood donors has the potential to become a routine procedure in blood centers.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-03-15
    Description: Rhesus D category VI (DVI) is the clinically most important partial D. DVI red blood cells were assumed to possess very low RhD antigen density and to be caused by twoRHD-CE-D hybrid alleles. Because there was no population-based work-up, we screened three populations in central Europe for DVI. Twenty-six DVI samples were detected and examined by exon-specific RHD polymerase chain reaction with sequence-specific primers (PCR-SSP). A new genotype, hereby designated D category VI type III, was characterized as a RHD-Ce(3-6)-D hybrid allele by sequencing of the cDNA, parts of intron 1, and by PCR-restriction fragment length polymorphism (PCR-RFLP) of intron 2. Rhesus introns 5 and 6 were sequenced and the 3′ breakpoints of all knownDVItypes shown to be distinct. We differentiated the 5′ breakpoints of DVItypeI andDVItype II by a newly devised RHD-PCR. Thus, the DVI phenotype originated in at least three independent molecular events. Each DVI type showed distinct immunohematologic features in flow cytometry. The number of RhD proteins accessible on the red blood cells' surface ofDVItype III was normal (about 12,000 antigens/cell; DVItypeI, 500;DVItype II, 2,400) based on the determination of an RhD epitope density profile. DVItype II and DVItype III occurred as CDe haplotypes, and DVItype I as a cDE haplotype.The distribution of the DVItypes varied significantly in three German-speaking populations. Genotyping strategies should take account of allelic variations in partial RhD. The reconsideration of previous serologic and clinical data for partial D in view of the underlying molecular structures may be worthwhile.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-09-01
    Description: Serological typing for the classical ABO blood groups is routinely performed using anti-A and anti-B antisera of polyclonal or monoclonal origin, which are able to distinguish four phenotypes (A, B, AB, and O). Modern molecular biology methods offer the possibility of direct ABO genotyping without the need for family investigations. Typing can be done with small amounts of DNA and without detection of blood group molecules on the surface of red blood cells. We developed a system of eight polymerase chain reactions (PCR) to detect specific nucleotide sequence differences between the ABO alleles O1, O2, A1, A2, and B. PCR amplification using sequence-specific primers and detection of amplification products by agarose gel electrophoresis is one of the fastest genotyping methods and is easy to handle. With our method we tested the A1,2BO1,2 genotypes of 300 randomly chosen persons out of a pool of platelet donors and found the results to be consistent with ABO glycosyltransferase phenotypes. We also identified a presumably new ABO allele, which may be the result of a crossing-over event between alleles O1 and A2.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-09-01
    Description: Serological typing for the classical ABO blood groups is routinely performed using anti-A and anti-B antisera of polyclonal or monoclonal origin, which are able to distinguish four phenotypes (A, B, AB, and O). Modern molecular biology methods offer the possibility of direct ABO genotyping without the need for family investigations. Typing can be done with small amounts of DNA and without detection of blood group molecules on the surface of red blood cells. We developed a system of eight polymerase chain reactions (PCR) to detect specific nucleotide sequence differences between the ABO alleles O1, O2, A1, A2, and B. PCR amplification using sequence-specific primers and detection of amplification products by agarose gel electrophoresis is one of the fastest genotyping methods and is easy to handle. With our method we tested the A1,2BO1,2 genotypes of 300 randomly chosen persons out of a pool of platelet donors and found the results to be consistent with ABO glycosyltransferase phenotypes. We also identified a presumably new ABO allele, which may be the result of a crossing-over event between alleles O1 and A2.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-08-15
    Description: Graft-versus-leukemia (GvL) has been shown to be an important immune- mediated antitumor effect in hematologic malignancies. It is still unknown whether such an immunemediated antitumor effect has clinical implications in patients with solid tumors. A 32-year-old woman with inflammatory breast cancer received a bone marrow transplant (BMT) from her HLA-identical sibling. During graft-versus-host disease (GvHD) cytotoxic T lymphocytes were grown and tested in a chromium-release assay against B and T lymphocytes of the patient and donor and against a panel of breast cancer cell lines. Resolution of liver metastases was observed simultaneously with clinical GvHD in the first weeks after transplant. In addition, minor histocompatibility antigen (MiHA)- specific and major histocompatibility complex (MHC) class I antigen- restricted cytotoxic T lymphocytes recognizing breast carcinoma target cells were isolated from the blood of the patient. Pretreatment of such target cells with tumor necrosis factor (TNF)-alpha but not with interferon (IFN)-alpha or IFN-gamma increased susceptibility of these cells to lysis by cytotoxic T lymphocytes. Clinical course and in vitro results suggest that a graft-versus-tumor (GvT) effect might exist after allogeneic BMT for breast cancer. However, clinical experience on a larger scale would be required to determine the clinical efficacy of GvT effects in patients with solid tumors.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...