ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-02
    Description: Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic myeloid neoplasms, in which disease progression is quite common, eventually terminating in secondary acute myeloid leukemia (sAML). To elucidate differential roles of mutations in MDS progression and sAML evolution, we investigated clonal dynamics of somatic mutations using targeted sequencing of 699 MDS patients, of which 122 were analyzed for longitudinally collected samples. Combining publicly available data, mutational data in a total of 2,250 MDS cases were assessed for their enrichment in specific disease subtypes. All samples were obtained after informed consent. Genotyping data from samples with low- (n=1,207) and high-risk (n=683) MDS as well as sAML (n=360) were available for most prevalently mutated 25 driver genes. In univariate comparison between low- and high-risk MDS, the majority of differentially mutated genes were enriched in high-risk MDS, except for SF3B1, which was more frequently mutated in low-risk MDS. Multivariate analysis was performed using a least absolute shrinkage and selection operator model. As a result, mutations in 7 genes (FLT3, PTPN11, WT1, IDH1, NPM1, IDH2,and NRAS) designated as 'Type-1' mutations, were significantly enriched in sAML compared to high-risk MDS. When comparison was made between high- and low-risk MDS, mutations in 10 genes, including GATA2, NRAS, KRAS, IDH2, TP53, RUNX1, STAG2, ASXL1, ZRSR2, and TET2, were enriched in high-risk MDS. The latter mutations are designated as 'Type-2' mutations, excluding NRAS and IDH2 mutations, which were already assigned to the Type-1 category. To characterize the chronological behavior of Type-1 and Type-2 mutations, we performed longitudinal analyses of 122 cases, of which 90 progressed to sAML. Overall, driver mutations tended to increase their clone sizes between two time points. In accordance with their significant enrichment in sAML, Type-1 mutations were more likely to be newly acquired at the second time points, compared to Type-2 and other mutations (P=0.0001). By contrast, in patients with high-risk MDS at the second time point, Type-2 mutations were more dominant than Type-1 mutations, and most of the Type-2 mutations (88%) increased their clone sizes at the second sampling. Similarly, Type-2 mutations found in high-risk MDS or sAML evolving from low-risk MDS increased their clone sizes more frequently (30 out of 38 mutations (79%)) than Type-2 mutations in stable low-risk MDS without disease progression over time (4 out of 11 (36%)) (P=0.02). These findings suggest that Type-1 and Type-2 mutations might be associated with progression from high-risk MDS to sAML and low- to high-risk MDS, respectively. To further clarify the effects of the different classes of mutations on progression to sAML, 429 patients with MDS were analyzed for progression free survival (or PFS). Patients with Type-1 mutations (Group-I) had a significantly shorter PFS, compared to those who had Type-2 mutations but lacked Type-1 mutations (Group-II) (HR=1.82, 95% CI:1.08−3.05; P=0.025). Nevertheless, PFS in Group-II cases was still significantly shorter than that in other cases (HR=2.46, 95% CI:1.43−4.23; P=0.001). Of note, some Group-II cases subsequently acquired Type-I mutations during progression to sAML. By contrast, SF3B1-mutated patients tended to show slower progression to sAML, unless they carried either of Type-1 or 2 mutations (Group-III). Finally, the effects of these mutations on overall survival (OS) were assessed in a larger cohort of patients with MDS (n=1,347). Group-I cases were shown to have a significantly shorter OS than Group-II cases (HR=1.50, 95% CI:1.20−1.86; P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-03
    Description: MDS and related disorders, including MDS/MPN and sAML that evolved from these conditions constitute disease continuum characterized by a wide spectrum of molecular lesions which often overlap. Here, we defined general mutational spectrum and clonal architecture in a large cohort (n=718) of MDS studied by whole exome sequencing (WES) and target deep sequencing. Within this cohort 97 cases were studied at multiple time points to clarify the clinical impact of clonal dynamics on phenotype commitment or outcomes. All samples were obtained after informed consent, according to protocols approved by the respective ethics boards of the participating institutions. When mean and maximum variant allele frequency (VAF) for whole mutations were at one time-point evaluated in disease phenotypes, significantly higher averaged values suggested their larger clones in sAML and CMML compared to MDS. Clustering analysis of multiple mutational events by Pyclone software discriminated the cases with multiple mutational clones (positive heterogeneity) and those with a single expansion of MDS clone (no heterogeneity detected). Over 80% of low-risk MDS and all the sAML harbored multiple clusters of mutations. These results suggest that intra-tumor heterogeneity of MDS is most likely due to various sizes of clonal and subclonal mutations, likely impacting clinical behavior. To delineate clonal dynamics in MDS, we assessed mutational burden and their temporal changes in serially collected samples (n=97). Among these, Pyclone analysis was applied to exome sequencing at two time points (n=11 pairs). All cases showed various mutational clusters with individual expansions and declines, including initially present, newly acquired or disappearing during clinical course. Initial subclones were identified at disease presentation in 55% of cases, of which in 86% the subclones expanded to occupy whole MDS population with clonal sweep. New subclones acquired during clinical course were identified in 91%, in which 60% cases harbored clonal sweep. Disappearing clones were observed in 55% of cases. Next, we applied clustering analysis on clonal size of driver mutations evaluated at multiple time points (n=97 cases) to categorize the most frequently mutated genes into 3 subtypes. Mutational burden of PTPN11 most frequently increased and were associated with leukemic evolution (an example of type I gene). Similarly, CBL, NRAS, STAG2, RUNX1, and IDH1 were categorized into the type I genes, demonstrating increased clonal size resulting in the evolutions into high-risk phenotypes. Although JAK2 mutations were related to the stable clinical course when the mutational burden decreased, cases with highly expanded JAK2 mutations resulted in leukemic evolution (occasional evolution or expansions; type II gene). DNMT3A, SRSF2, TP53, U2AF1, and ASXL1 mutations were also categorized into such type II consequences with occasional progression. The last category (type III) included clonal/founder genes EZH2, TET2, SF3B1 and PRPF8, demonstrating random shifts of clonal size and lack of association with leukemic evolution. The proposed hierarchical categorization correlates with clinical parameters. Cases with the increasing burden of type I gene mutations showed most significant increases in myeloblasts. Overall survival measured from second sampling time points in the cases with increasing type I mutations was significantly shorter in the whole cohort (HR=2.05, 95%CI; 1.14-3.79, P=0.016) and in the cases solely with IPSS INT-1 (HR=2.37, 95%CI; 1.01-5.97, P=0.048). Subcohorts classified according to the presence or absence of increasing type I mutations did not differ with regard to the IPSS categories. In contrast, increased mutational burden of type II and III genes did not correlated with any of the clinical parameters examined, even though some gene mutations including TP53, EZH2, and U2AF1 represented poor prognostic factors at disease presentation. In conclusion, this work demonstrates that detailed understanding of clonal dynamics allows for new insights into clinical significance of somatic mutations, made possible only by serial sample sequencing at multiple time points. Increasing clonal burden of extracted genes associated with predictive prognostic impact should be prospectively validated in more uniform and larger cohort of MDS. Disclosures Sekeres: TetraLogic: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Shih:Novartis: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-03
    Description: Introduction Primary central nervous system lymphoma (PCNSL) is a rare subtype of non-Hodgkin lymphoma, of which approximately 95% are diffuse large B-cell lymphomas (DLBCLs). Despite the substantial development of intensive chemotherapy during the past two decades, overall clinical outcome of PCNSL has been poorly improved especially in elderly and so has been our knowledge about the molecular pathogenesis of PCNSL, in terms of driver alterations that are relevant to the development of PCNSL. Method To delineate the genetic basis of PCNSL pathogenesis, we performed a comprehensive genetic study. We first analyzed paired tumor/normal DNA from 35 PCNSL cases by whole-exome sequencing (WES). Significantly mutated genes identified by WES and previously known mutational targets in PCNSL and systemic DLBCL were further screened for mutations using SureSelect-based targeted deep sequencing (Agilent) in an extended cohort of PCNSL cases (N = 90). Copy number alterations (CNAs) have been also investigated using SNP array-karyotyping (N =54). We also analyzed WES and SNP array data of systemic DLBCL cases (N = 49) generated by the Cancer Genome Atlas Network (TCGA) to unravel the genetic difference between PCNSL and systemic DLBCL. Results The mean number of nonsynonymous mutations identified by WES was 183 per sample, which was comparable to the figure in systemic DLBCL and characterized by frequent somatic hypermutations (SHMs) involving non-Ig genes. A higher representation of C〉T transition involving CpG dinucleotides and hotspot mutations within the WRCY motif targeted by SHM further suggested the involvement of activation-induced cytidine deaminase (AID) in the pathogenesis of PCNSL. We found 12 genes significantly mutated in PCNSL (q 〈 0.1), including MYD88, PIM1, HLA-A, TMEM30A, B2M, PRDM1, UBE2A, HIST1H1C, as well as several previously unreported mutational targets in systemic DLBCL or PCNSL, such as SETD1B, GRB2, ITPKB, EIF4A2. Copy number analysis identified recurrent genomic segments affected by focal deletions (N = 27) and amplifications (N = 10), most of which included driver genes targeted by recurrent somatic mutations or known targets of focal CNAs such as CDKN2A and FHIT. Subsequent targeted sequencing finally identified a total of 107 significantly mutated genes, of which 43 were thought to be targeted by SHM according to their mutational signature and genomic distribution. Most cases with PCNSL (98%) had mutations and CNAs involving genes that are relevant to constitutive NF-KB/Toll-like receptor (TLR)/BCR activity, including those in MYD88 (80%), CD79B/A (60%), CARD11 (18%), TNFAIP3 (26%), GRB2 (24%) and ITPKB (23%). Genetic alterations implicated in escape from immunosurveillance were also frequently identified in as many as 76% of cases. Mutations of HLA-B (64%), HLA-A (36%), HLA-C (28%), B2M (14%) and CD58 (12%) were commonly detected in addition to CNAs in 6p21.32 (HLA class II), 1p13.1 (CD58) and 15q15.2 (B2M), suggesting the importance of immune escape in the pathogenesis of PCNSL. SHMs were also seen in most cases (98%), which affected not only known targets of AID including PIM1, IGLL5 and BTG2 but also previously unreported genes involved in cell proliferation, apoptosis, or B cell development. The pattern of frequently mutated genes in PNCSL was more uniform compared with that in systemic DLBCL, and similar to that found in the activated B cell subtype of DLBCL (ABC-DLBCL), which was in accordance with the previous report of immunophenotypic analysis of PCNSL. On the other hand, mutations of HLA class I genes (HLA-B, HLA-A) were more frequently mutated in PCNSL compared with ABC-type DLBCL. Conclusion WES, SNP array karyotyping and follow-up targeted sequencing of a large cohort of PCNSL cases revealed the genetic landscape of PCNSL, which were more homogeneous than that of systemic DLBCL, and thought to be involved in activation of constitutive NF-KB/TLR/BCR signaling, escape from immunosurveillance, as well as highly frequent SHMs. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-03
    Description: Introduction Splicing factor (SF) mutations represent a novel class of driver mutations in myelodysplastic syndromes (MDS), where SF3B1 and SRSF2 are most frequently affected. Although abnormal RNA splicing is thought to play a central role in the pathogenic mechanism of mutated SFs, little is known about exact gene targets whose abnormal splicing is responsible for the pathogenesis of MDS. Methods We enrolled a total of 480 patients with MDS, for whom complete clinical and pathological data were available. RNA sequencing was performed for bone marrow mononuclear cells (BM/MNCs) and/or CD34+ cells from 215 MDS patients. Observed splicing junctions were compared between samples with and without each SF mutation. In SF-mutated cases, NMD could cause severe degradation of abnormal transcripts and obscure the effect of SF-mutants. To sensitively detect abnormal transcripts otherwise degraded by nonsense-mediated RNA decay (NMD), analysis was also performed on BM/MNCs from 7 patients and CD34+ bone marrow cells from 3 patients with or without inhibition of NMD by cycloheximide (CHX). Common mutations and copy number variations were also investigated using targeted sequencing. Results SF3B1 and SRSF2 mutations were associated with distinct clinical phenotypes and outcomes. SF3B1-mutated cases typically showed isolated erythroid dysplasia and high proportion of ring sideroblasts, whereas SRSF2 mutations correlated with a significantly higher incidence of myeloid and megakaryocyte dysplasia (P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-03
    Description: Myelodysplastic syndromes (MDS) and related disorders are a heterogeneous group of chronic myeloid neoplasms with a high propensity to acute myeloid leukemia. A cardinal feature of MDS, as revealed by the recent genetic studies, is a high frequency of mutations and copy number variations (CNVs) affecting epigenetic regulators, such as TET2, IDH1/2, DNMT3A, ASXL1, EZH2, and other genes, underscoring a major role of deregulated epigenetic regulation in MDS pathogenesis. Meanwhile, these mutations/deletions have different impacts on the phenotype and the clinical outcome of MDS, suggesting that it should be important to understand the underlying mechanism for abnormal epigenetic regulation for better classification and management of MDS. SETD2 and ASH1L are structurally related proteins that belong to the histone methyltransferase family of proteins commonly engaged in methylation of histone H3K36. Both genes have been reported to undergo frequent somatic mutations and copy number alterations, and also show abnormal gene expression in a variety of non-hematological cancers. Moreover, germline mutation of SETD2 has been implicated in overgrowth syndromes susceptible to various cancers. However, the role of alterations in these genes has not been examined in hematological malignancies including myelodysplasia. In this study, we interrogated somatic mutations and copy number variations, among a total of 1116 cases with MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), who had been analyzed by target deep sequencing (n=944), and single nucleotide polymorphism-array karyotyping (SNP-A) (n=222). Gene expression was analyzed in MDS cases and healthy controls, using publically available gene expression datasets. SETD2 mutations were found in 6 cases, including 2 with nonsense and 4 with missense mutations, and an additional 10 cases had gene deletions spanning 1.8-176 Mb regions commonly affecting the SETD2 locus in chromosome 3p21.31, where SETD2 represented the most frequently deleted gene within the commonly deleted region. SETD2 deletion significantly correlated with reduced SETD2 expression. Moreover, MDS cases showed a significantly higher SETD2 expression than healthy controls. In total, 16 cases had either mutations or deletions of the SETD2 gene, of which 70% (7 out of 10 cases with detailed diagnostic information) were RAEB-1/2 cases. SETD2 -mutated/deleted cases had frequent mutations in TP53 (n=4), SRSF2 (n=3), and ASXL1 (n=3) and showed a significantly poor prognosis compared to those without mutations/deletions (HR=3.82, 95%CI; 1.42-10.32, P=0.004). ASH1L, on the other hand, was mutated and amplified in 7 and 13 cases, respectively, of which a single case carried both mutation and amplification with the mutated allele being selectively amplified. All the mutations were missense variants, of which 3 were clustered between S1201 and S1209. MDS cases showed significantly higher expression of ASH1L compared to healthy controls, suggesting the role of ASH1L overexpression in MDS development. Frequent mutations in TET2 (n=8) and SF3B1 (n=6) were noted among the 19 cases with ASH1L lesions. RAEB-1/2 cases were less frequent (n=11) compared to SETD2-mutated/deleted cases. ASH1L mutations did not significantly affect overall survival compared to ASH1L-intact cases. Gene Set Expression Analysis (Broad Institute) on suppressed SETD2 and accelerated ASH1L demonstrated 2 distinct expression signatures most likely due to the differentially methylated H3K36. We described recurrent mutations and CNVs affecting two histone methyltransferase genes, which are thought to represent novel driver genes in MDS involved in epigenetic regulations. Given that SETD2 overexpression and reduced ASH1L expression are found in as many as 89% of MDS cases, deregulation of both genes might play a more role than expected from the incidence of mutations and CNVs alone. Although commonly involved in histone H3K36 methylation, both methyltransferases have distinct impacts on the pathogenesis and clinical outcome of MDS in terms of the mode of genetic alterations and their functional consequences: SETD2 was frequently affected by truncating mutations and gene deletions, whereas ASH1L underwent gene amplification without no truncating mutations, suggesting different gene targets for both methyltransferases, which should be further clarified through functional studies. Disclosures Alpermann: MLL Munich Leukemia Laboratory: Employment. Nadarajah:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Shih:Novartis: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-02
    Description: Background. It has been shown that bone marrow (BM) microenvironment and physiological hematopoiesis were disturbed during development of acute myelogenous leukemia (AML). However, little is known the molecular mechanism involved in this process. We have recently demonstrated that high number of extracellular vesicles (EVs) including exosomes exist in BM interstitial fluid. Myeloid neoplasm derived EVs carry miRNAs and transmitted into mesenchymal stem cells (MSCs) (Highlights of ASH 2015, GSE64029). A subset of extracellular vesicular miRNAs including miR-7977 was increased in BM cavity and regulate the expression level of mRNA stabilizer poly(rC) binding protein 1 (PCBP1) and modulated the function of hematopoietic supporting capacity of MSCs. On the other hand, a relatively large subset of extra vesicular miRNAs was actually decreased in BM cavity of AML as compared with that of healthy volunteer. However, the clinical significance of these decreased miRNAs is unresolved. In the present study, miRNA pathway analysis was conducted to elucidate the role of decreased miRNAs in BM environment of AML. Methods. To harvest EVs from 2 x 105primary AML CD34+ cells, normal BM CD34+ cells and leukemic cell lines including TF-1 and Kasumi-1, cells were cultured in serum-free StemPro®-34 medium with a cytokine cocktail on plates coated with fibronectin fragments. EV miRNA from the supernatant of CD34+ hematopoietic and leukemic cells were prepared. Microarray analysis of the miRNA profiles was done with the human miRNA Oligo chip (Human_miRNA_V20) and the 3D-Gene® miRNA labeling kit. For analysis of transcriptome in CD34+/CD38- normal and AML cells, data sets (GSE24395) was downloaded as a matrix by GEOquery package (Bioconductor, R commander version 3.2.2). The data sets (GSE24395) and our data sets (GSE64029) were normalized by rma method using limma package before analysis. Clustering analysis were performed with amap package to find a subset of miRNA decreased. For miRNA pathway analysis, DIANA-mirPath version 3 was utilized. Results. Thirty EV miRNAs derived from AML were decreased as compared with those from normal CD34+ cells. Especially, miR-92a-3p, miR-125a-3p, miR-4448, miR-4484 and miR-4270 were remarkably reduced. The miRNA pathway analysis indicated that a KEGG pathway (hsa04520), adherens junction strongly correlated with these decreased miRNAs (P=0.00000025). The miRNAs including miR-4448, miR-4484 and miR-4270 could be associated with downstream molecules of adherens junction including beta-catenin, IGF-1R, WAVE, Vinculin, TGF-beta and Smad4. Importantly, we found that CD34+CD38- AML stem cells highly expressed JAM family molecules (JAM2 and JAM3) associated with adherens junction (GSE24395). These results suggested that these miRNAs regulate the pathway of adherens junction in BM microenvironment. In addition, adherens junction could be enhanced concomitant with reduction of miRNAs released from AML. Conclusion. EV miRNAs derived from AML are involved in the regulation of the pathway of adherens junction in BM microenvironment. Adherens junction is known to contribute to quiescence, apoptosis and drug resistance via HIPPO signaling pathway, EV miRNAs may have an important role on the development and drug resistance of AML. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-03
    Description: Adult T-cell leukemia/lymphoma (ATL) is a distinct subtype of peripheral T-cell neoplasms associated with human T-cell leukemia virus type-1 retrovirus. ATL includes a heterogeneous group of patients in terms of pathological and clinical features as well as prognosis, suggesting the presence of underlying molecular pathogenesis that could explain such heterogeneity among patients. Recently, we performed an integrated molecular analysis of a large number of ATL cases and delineated a comprehensive registry of gene mutations and other genetic/epigenetic lesions in ATL. In this study, we investigated possible correlations between these genetic/epigenetic lesions and clinical/pathological phenotypes in a large set of ATL patients, with a special focus on the impact of mutations and copy number alterations (CNAs) on clinical outcome. We analyzed a total of 361 ATL samples, including acute (n = 192), lymphoma (n = 66), chronic (n = 89), and smoldering (n = 14) subtypes, for recurrent mutations and CNAs. Each subtype had characteristic genetic/epigenetic features, suggesting a distinct molecular pathogenesis therein. Aggressive (acute and lymphoma) subtypes were characterized by a higher number of mutations and CNAs including focal amplifications/deletions, hyperploid status, and CIMP phenotype, compared with indolent (chronic and smoldering) tumors. Two mutations (TP53 and IRF4) and eight focal deletions involving 1p13 (CD58), 6p21 (HLA-B), 9p21 (CDKN2A), 10p11 (CCDC7), 13q32 (GPR183), 16q23 (WWOX), 17p13 (TP53), and 19q13 (CEBPA), were more common in aggressive ATL than in indolent ATL. In contrast, showing a similar mutational distribution to those found in large granular lymphocytic leukemia, STAT3 mutations were characteristic of the indolent diseases. Gene set enrichment analysis of RNA-seq data showed a significant enrichment of MYC pathway and genes regulating cell cycle and DNA repair in upregulated genes in aggressive ATL. Next, we assessed the impact of mutations and CNVs on prognosis among 215 ATL cases, for which survival data were available. In the entire cohort, mutation in CCR4 and IRF4, focal amplification in 9p24 (CD274) and 14q32 (BCL11B), and focal deletion in 9p21 (CDKN2A) were found to be significant predictors of poor overall survival, after adjustment for disease subtype and age. Multivariate analysis revealed that disease subtype (aggressive vs. indolent) was the most significant predictor of clinical outcome in ATL. Subsequent multivariate analysis according to disease subtype showed that within the patients with aggressive ATL, older age (≥ 70 years), CCR4 mutations, and 9p24 amplification were independently associated with an adverse outcome. Based on the number of the risk factors they owned, patients with aggressive ATL were classified into three categories showing marked difference in 3-year overall survival (OS) (P 〈 0.001): those with no risk factors (OS, 32%), with one risk factor (18%), and with two or more (0%). Among the patients with indolent ATL, we found IRF4 and TP53 mutations, 9p24 amplification, and deletions in 9p21 and 10p11 were independently associated with reduced survival. Interestingly, these alterations, except for 9p24 amplification, were also identified as genes more frequent in aggressive ATL. More importantly, based on these risk factors, the patients with indolent ATL can be classified into two categories showing very different prognostic profiles: patients with no risk factors (OS, 89%) and those with one or more risk factors (21%) (P 〈 0.001, HR = 16.8, 95% CI:5.4-52.5), suggesting that patients with indolent ATL having a genetic feature of the aggressive subtypes might genetically and biologically represent a distinct subset, which should be better managed as having an aggressive disease. Among these poor prognostic factors, 9p24 amplification and CCR4 mutation are especially interesting, because these lesions might be plausible targets of available agents, including anti-PD1/PD-L1 and anti-CCR4 antibodies. In conclusion, based on the comprehensive genetic profiling, we demonstrated that the known subtypes of ATL can be further classified into genetically and biologically distinct subsets of tumors characterized by discrete sets of genetic lesions and substantially different prognosis. Our results suggest that molecular profiling can improve the prediction of prognosis in ATL patients and better guide therapy. Disclosures Tobinai: Gilead Sciences: Research Funding. Miyazaki:Shin-bio: Honoraria; Chugai: Honoraria, Research Funding; Sumitomo Dainippon: Honoraria; Celgene Japan: Honoraria; Kyowa-Kirin: Honoraria, Research Funding. Watanabe:Daiichi Sankyo Co., Ltd.: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-02
    Description: Introduction: Polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome is a rare paraneoplastic disease due to an underlying monoclonal plasma cell (PC) dyscrasia. Despite of dynamic symptoms associated with highly elevated VEGF, monoclonal PCs are thought to be quite small, and pathogenic significance of these PCs remains undetermined. In this study, we performed whole exome sequencing (WES), target sequencing, and RNA sequencing of PCs in patients with POEMS syndrome in order to define its genetic profiles. Methods: Patients diagnosed with POEMS syndrome at Chiba University Hospital from July 2014 to June 2016 were enrolled. DNA was extracted from either PCs which were isolated from patients' bone marrow (BM) using CD138 MACS (Miltenyi) or buccal cells as controls. WES and target sequencing were performed using HiSeq2500 (Illumina) and MiSeq (Illumina), respectively. The data of WES and target sequencing were analyzed by Empirical Bayesian mutation Calling (EBCall). Copy number was analyzed using the data of WES. RNA sequencing of PCs isolated by MACS and FACS sorting was conducted using HiSeq 1500 (Illumina). PCs from some patients diagnosed with multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) were also collected as controls for RNA sequencing. Results: Twenty POEMS patients (M:F 12:8, mean age 42.6, range 16-78; 15 newly diagnosed, 5 refractory or relapsed cases) were included in this study. Regarding the types of M protein, 55% (11/20) were IgA-λ, 25% (5/20) were IgG-λ, and each individual case of the following; IgA-λ+IgG-λ, BJP-λ, IgG-κ, and Castleman's variant with no M protein. The mean serum VEGF was 6,471 pg/ml (range 1,190-13,800), and the mean PCs percentage in the BM was 4.4% (range 0.8-10.5). WES was performed in 15 cases; a total of 359 somatic mutations in 334 genes were revealed in 93.3% of cases (14/15) with a mean number of 23.9 (range 0-119) in each. All these mutated genes were significantly enriched in several pathways related to cell adhesion. Importantly, frequently mutated genes in MM such as NRAS, KRAS, and TP53 were not identified. Among all mutations, 1.7% were frameshift insertions, 2.0% were frameshift deletions, 4.2% were stop gains, 0.8% were non-frameshift deletions, 60.2% were other non-synonymous single nucleotide variants (SNVs), 29.5% were synonymous SNVs, and 1.7% were splicing mutations which were within 2-bp of a splicing junction. Copy-number variations were detected in 33.3% of cases (5/10) including -13 (2 cases), +1q (2 cases), and hyperdiploidy (2 cases). To carry out target sequencing in all 20 cases, we defined 51 target genes which included recurrently mutated genes from our WES data, frequently mutated genes in hematopoietic and lymphoid tissues according to the database (COSMIC), and 15 frequently mutated genes in MM (NRAS, KRAS, TP53, BRAF, CDKN2C, FGFR3, BIRC3, DIS3, CYLD, KDM6A, LRP1B, FAM46C, COL6A3, DNAH5, and KRT6A). A total of 60 somatic mutations were revealed in 65% of cases (13/20), and 9 new somatic mutations were found in the cases in which WES was also performed. Ten recurrently mutated genes were identified; KLHL6 in 20% of cases (4/20), each of LTB, RYR1 in 15% of cases (3/20), and each of EHD1, EML4, HEPHL1, HIPK1, PCDH10, USH2A, and ZNF645 in 10% of cases (2/20). Among frequently mutated genes in MM, only 3 genes (FAM46C, LRP1B, and DNAH5) were mutated, each in a single case. We finally conducted RNA sequencing of the FACS-sorted PCs in 5 POEMS patients compared to 5 MGUS and 4 MM patients. Upregulated genes were significantly enriched in some gene sets, gene ontology terms, and pathways related to immune response and cell adhesion, whereas downregulated genes were related to tumorigenesis. Of note, VEGF was not significantly upregulated in POEMS patients. Principal component analysis distinguished the 3 disease groups of patients with marginal overlaps between POEMS and MGUS, and also MGUS and MM. Conclusions: Our data clearly demonstrate that the genetic profiles of PCs in POEMS syndrome are distinct from those in MM and MGUS. Notably, PCs may not be the main source of extremely elevated VEGF in POMES syndrome. On-going further investigation will help clarify the molecular pathogenesis of POEMS syndrome. Disclosures Ogawa: Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding; Kan research institute: Consultancy, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-03
    Description: Adult T-cell leukemia/lymphoma (ATL) is a peripheral T-cell neoplasm of largely unknown genetic basis, which is associated with human T-cell leukemia virus type-1 (HTLV-1) infection. To delineate a genetic landscape of somatic alterations in ATL, we have performed an integrated genetic study, in which whole-genome/exome (WGS/WES) and transcriptome sequencing (RNA-seq) was performed for a cohort of 83 paired ATL samples, followed by extensive validation using targeted sequencing of detected mutations in 370 follow-up samples. A striking feature of driver lesions in ATL was their strong enrichment in the components of T-cell receptor (TCR) / NF-κB pathway. Accounting for more than 90% of ATL cases, these lesions were characterized by the predominance of activating alterations, including hotspot missense mutations in PLCG1 (36%), PRKCB (33%), CARD11 (24%), VAV1 (18%), IRF4 (14%) and FYN (4%). Among these, most frequently mutated was PLCG1, which encodes phospholipase C γ1 (PLCγ1), a key regulator of the proximal TCR signaling. Besides the S345F and S520F mutations recently reported in cutaneous T-cell lymphoma, we identified an additional hotspot mutations (R48W, E1163K, and D1165H). The second most frequently mutated gene was PRKCB, encoding a member of the protein kinase C (PKC) family of proteins (PKCβ), a pivotal signaling molecule downstream of PLCγ. The frequent mutations of PKCβ were unexpected, because it is PKCθ that has been implicated in TCR signaling, whereas PKCβ has been more focused in the context of B-cell receptor signaling. Approximately 93% of the PRKCB mutations were confined to the catalytic domain with a prominent hotspot at D427, suggesting gain-of-function nature of these mutations. Consistent with this, when transduced with the D427N PKCβ mutant, HEK293T and/or Jurkat cells showed increased membrane translocation after PMA/Ionomycin-stimulation, enhanced IKK phosphorylation and p65 nuclear translocation, and augmented NF-κB transcription, compared to wild-type PKCβ-transduced cells. Thus, these PRKCB mutations are the first activating mutations of this family identified in human cancers. Downstream to PKC lies CARD11, a scaffolding protein required for antigen receptor-induced NF-κB activation. Although previously reported in B-cell lymphomas, CARD11 mutations were more common in ATL (24%). In B-cell lymphomas, mutations are largely limited to the coiled-coil (CC) domain, whereas in ATL, they were clustered not only within the CC domain, but also within the PKC-responsive inhibitory domain, showing a prominent mutational hotspot at E626. The inhibitory domain has been implicated in autoinhibition, whose deletion leads to constitutive activation of CARD11. Intriguingly, WGS identified small intragenic deletions confined to this domain (exons 14-17) in 4 cases (8%) without canonical mutations, and RNA-seq confirmed the skipping of the corresponding exons in these cases. Remarkably, CARD11 mutation significantly co-occurred with PRKCBmutations, suggesting potential functional synergism between these lesions. Actually, overexpression of wild-type CARD11 induced NF-κB activation, which was further augmented by E626K mutation. Similarly, when both CARD11 (E626K) and PRKCB (D427N) mutants were co-expressed, more enhanced NF-κB activation was observed. RNA-seq and follow-up RT-PCR screening also identified novel gene fusions in TCR / NF-κB pathway: five CTLA4-CD28 and three ICOS-CD28 fusions were observed in seven (7%) of the 105 cases examined, of whom one patient carried both chimeric fusions. WGS revealed tandem duplications of 2q33.2 segments containing CD28, CTLA4, and ICOS, compatible with the corresponding fusion transcripts. B7/CD28 co-signaling molecules, including CD28, CTLA4, and ICOS co-receptors, play pivotal roles in positive and negative regulations of TCR signaling. All the predicted chimeric proteins had the cytoplasmic part of CD28, and are expected to be expressed under the control of the regulatory element of CTLA4 or ICOS, likely leading to prolonged expression of CD28 co-stimulator. Our findings suggest that deregulated TCR / NF-κB pathway caused by genetic alterations is a hallmark of ATL pathogenesis. The predominance of gain-of-function mutations in this pathway offers good opportunities for exploiting these mutations for the targets of novel drugs to better manage patients. Disclosures Tobinai: Gilead Sciences: Research Funding. Miyazaki:Sumitomo Dainippon: Honoraria; Celgene Japan: Honoraria; Chugai: Honoraria, Research Funding; Shin-bio: Honoraria; Kyowa-Kirin: Honoraria, Research Funding. Watanabe:Daiichi Sankyo Co., Ltd.: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-29
    Description: Background : Anagrelide is a widely used therapeutic agent for patients with essential thrombocythemia. While other cytoreductive agents, such as hydroxyurea, influence multi-lineage blood cells, anagrelide exerts less effect on the white and red blood cell lineages. Although the clinical efficacy of anagrelide has been reported, the exact mechanism of action is unclear. Recently, immortalized megakaryocyte progenitor cell lines (imMKCLs) were established from human induced pluripotent stem (iPS) cells by the introduction of doxycycline-inducible lentiviral vectors harboring c-MYC, BMI1, and BCL-XL for the clinical application of artificially generated platelets. In this study, we aimed to elucidate the molecular mechanism of anagrelide on the inhibition of platelet production using imMKCLs as an ideal model for human megakaryogenesis and platelet formation. Materials and Methods : imMKCLs, established at Center for iPS Cell Research and Application, Kyoto University, Japan, were cultured in Iscove's modified Dulbecco's medium with thrombopoietin (TPO), stem cell factor (SCF), and doxycycline. The differentiation of imMKCLs and platelet generation were induced by doxycycline removal. The generation of mature platelets was observed approximately 7 days after the differentiation was initiated. Both undifferentiated and differentiated imMKCLs were treated with several different concentrations of anagrelide. The cell proliferation and number of generated platelets following anagrelide treatment were analyzed by BrdU cell proliferation assay and flow cytometry, respectively. To explore the molecular mechanism of anagrelide treatment in imMKCLs, we performed mRNA sequencing in imMKCLs treated with or without anagrelide followed by gene ontology (GO) analysis and gene set enrichment analysis (GSEA). The expression of genes related to megakaryogenesis and platelet formation was also analyzed utilizing quantitative real-time PCR. Results : Anagrelide exposure caused morphologically suppressive changes in the differentiation of imMKCLs. Anagrelide treatment also suppressed the mRNA expression of the megakaryocytic surface markers CD41 and CD61 in both undifferentiated (P 〈 0.01 and P 〈 0.001, respectively) and differentiated (P 〈 0.01 and P 〈 0.001, respectively) settings. The BrdU incorporation rate in differentiated imMKCLs decreased significantly following anagrelide treatment (P 〈 0.001, anagrelide 0 vs. 1 or 10 µM). The resultant generation of mature platelets (double positive for CD41 and CD42b) was significantly decreased by exposure to anagrelide, as analyzed by flow cytometry (P 〈 0.001). Regarding the molecular mechanism of anagrelide treatment on imMKCLs, GO analysis following RNA sequencing demonstrated that gene sets related to platelet activation and degranulation were significantly downregulated in both undifferentiated and differentiated conditions. Moreover, GSEA revealed that gene sets related to the cell cycle, such as mitosis and DNA replication, were decreased as well as platelet-specific genes. The mRNA expression levels of genes related to megakaryogenesis and platelet-formation, such as FLI1, TAL1, GATA1, and PF4, were significantly downregulated, especially in differentiated imMKCLs, by anagrelide treatment (P 〈 0.001, P = 0.013, P 〈 0.01, and P 〈 0.01, respectively). Conclusions : We successfully reproduced the platelet-lowering effect of anagrelide by using imMKCLs from human iPS cells that could generate functional platelets in culture. Our RNA sequencing results revealed that anagrelide specifically suppressed megakaryogenesis and platelet formation-related genes. Additional studies including an apoptosis assay and cell cycle analysis of imMKCLs following anagrelide exposure are ongoing to elucidate further molecular mechanisms of anagrelide treatment. Disclosures Takayama: Megakaryon co. Ltd.: Research Funding. Eto:Megakaryon co. Ltd.: Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...