ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (11)
  • MDPI  (7)
  • American Physical Society (APS)  (1)
  • Blackwell Publishing Ltd  (1)
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To determine the environmental impact of oil-combustion pollutants and soil dust on a lichen, we examined the spectral reflectance of thalli of the epiphytic fruticose lichen, Ramalina duriaei, expressed as values of NDVI (the normalized difference vegetation index). We analyzed electrolyte leakage caused by degradation of cell membranes in terms of electric conductivity of water, apart from chlorophyll degradation, the latter expressed as changes in the A435 nm/A415 nm ratio to indicate the physiological status of the lichen. The concentrations of Al, Cr, Fe, K, Ni, P, sulfate-S, Ti and V in the lichen thallus were measured to quantify the degree of pollution. Thalli of R. duriaei, growing in a nature reserve on the periphery of a 40-year-old industrial town, Ashdod, in southwest Israel were compared with thalli of R. duriaei from an unpolluted forest in the northeastern part of the country transplanted to the polluted areas in and around the town. After an exposure for 10 months, many transplants exhibited lower NDVI values, higher electric conductivity values as well as a lower A435 nm/A415 nm ratio. The three physical/physiological parameters thus reflected severe injury in the lichen transplants. The concentrations of Al, Cr, Fe, Ni, sulfate-S, Ti and V in the lichen transplants were found to correlate inversely with the NDVI values, whereas the concentrations of Fe, Ni, Ti and V were found to correlate with electric conductivity. The decrease in the A435 nm/A415 nm ratio was found to correlate with high concentrations of Al, Fe, Ni, sulfate-S, Ti and V in the lichen transplants, whereas the concentration of K and P correlated with both the NDVI value and the A435 nm/A415 nm ratio. It is concluded that in situ thalli of R. duriaei, the only indigenous fruticose lichen growing in the region of Ashdod, are endangered by the presence of pollutants and by acid rain due to the combustion of heavy fuel oil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-06
    Description: Especially in the remote sensing context, thematic classification is a desired product for coral reef surveys. This study presents a novel statistical-based image classification approach, namely Partial Least Square Discriminant Analysis (PLS-DA), capable of doing so. Three classification models were built and implemented for the images while the fourth was a combination of spectra from all three images together. The classification was optimised by using pre-processing transformations (PPTs) and post-classification low-pass filtering. Despite the fact that the images were acquired under different conditions and quality, the best classification model was achieved by combining spectral training samples from three images (accuracy 0.63 for all classes). PPTs improved the classification accuracy by 5%–15% and post-classification treatments further increased the final accuracy by 10%–20%. The fourth classification model was the most accurate one, suggesting that combining spectra from differ conditions improves thematic classification. Despite some limitations, available aerial sensors already provide an opportunity to implement the described classification and mark the next investigation step. Nonetheless, the findings of this study are relevant both to the field of remote sensing in general and to the niche of coral reef spectroscopy.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: In the face of rapid global change it is imperative to preserve geodiversity for the overall conservation of biodiversity. Geodiversity is important for understanding complex biogeochemical and physical processes and is directly and indirectly linked to biodiversity on all scales of ecosystem organization. Despite the great importance of geodiversity, there is a lack of suitable monitoring methods. Compared to conventional in-situ techniques, remote sensing (RS) techniques provide a pathway towards cost-effective, increasingly more available, comprehensive, and repeatable, as well as standardized monitoring of continuous geodiversity on the local to global scale. This paper gives an overview of the state-of-the-art approaches for monitoring soil characteristics and soil moisture with unmanned aerial vehicles (UAV) and air- and spaceborne remote sensing techniques. Initially, the definitions for geodiversity along with its five essential characteristics are provided, with an explanation for the latter. Then, the approaches of spectral traits (ST) and spectral trait variations (STV) to record geodiversity using RS are defined. LiDAR (light detection and ranging), thermal and microwave sensors, multispectral, and hyperspectral RS technologies to monitor soil characteristics and soil moisture are also presented. Furthermore, the paper discusses current and future satellite-borne sensors and missions as well as existing data products. Due to the prospects and limitations of the characteristics of different RS sensors, only specific geotraits and geodiversity characteristics can be recorded. The paper provides an overview of those geotraits.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-11
    Description: The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST). However, calibration notices issued by the United States Geological Survey (USGS) indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS) Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW) algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature) were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC) algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial variation of the extremely hot weather, a frequently-occurring phenomenon of an abnormal heat flux process in summer along the Yangtze River Basin, had been thoroughly analyzed. This successful application suggested that the IMW algorithm presented in the study could be used as an efficient method for LST retrieval from the Landsat 8 TIRS Band 10 data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-24
    Description: Soil quality (SQ) assessment has numerous applications for managing sustainable soil function. Airborne imaging spectroscopy (IS) is an advanced tool for studying natural and artificial materials, in general, and soil properties, in particular. The primary goal of this research was to prove and demonstrate the ability of IS to evaluate soil properties and quality across anthropogenically induced land-use changes. This aim was fulfilled by developing and implementing a spectral soil quality index (SSQI) using IS obtained by a laboratory and field spectrometer (point scale) as well as by airborne hyperspectral imaging (local scale), in two experimental sites located in Israel and Germany. In this regard, 13 soil physical, biological, and chemical properties and their derived soil quality index (SQI) were measured. Several mathematical/statistical procedures, consisting of a series of operations, including a principal component analysis (PCA), a partial least squares-regression (PLS-R), and a partial least squares-discriminate analysis (PLS-DA), were used. Correlations between the laboratory spectral values and the calculated SQI coefficient of determination (R2) and ratio of performance to deviation (RPD) were R2 = 0.84; RPD = 2.43 and R2 = 0.78; RPD = 2.10 in the Israeli and the German study sites, respectively. The PLS-DA model that was used to develop the SSQI showed high classification accuracy in both sites (from laboratory, field, and imaging spectroscopy). The correlations between the SSQI and the SQI were R2 = 0.71 and R2 = 0.7, in the Israeli and the German study sites, respectively. It is concluded that soil quality can be effectively monitored using the spectral-spatial information provided by the IS technology. IS-based classification of soils can provide the basis for a spatially explicit and quantitative approach for monitoring SQ and function at a local scale.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: The role played by unsustainable resource management in initiating international conflicts is well documented. The Syrian Civil War, commencing in March 2011, presents such a case. The prevailing opinion links the unrest with sequential droughts occurring from 2007–2010. Our research, however, reveals that the winter-rainfed agricultural conditions before 2011, as detected by satellite-derived vegetation indices, were similar and even better for Syrian farmers than for those of their Turkish counterparts across the border. Concurrently, summer-irrigated crops, heavily dependent on Euphrates River water originating from Turkey, notably declined in Syria while flourishing in Turkey. These findings are firmly supported by other independent and validated datasets, including long-term cross-border discharge, the water level in Syrian and Turkish reservoirs, and transborder groundwater flow. We conclude that the Turkish policy of unilaterally diverting the Euphrates water was the main reason for the agricultural collapse and subsequent instability in Syria in 2011. The obvious inference is that while prolonged drought exacerbated conditions, unsustainable anthropogenic water management in Turkey was the proximate cause behind the Syrian uprising.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-26
    Description: Land surface temperature (LST) is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS). This paper presents an adjustment of the split window algorithm (SWA) for TIRS that uses atmospheric transmittance and land surface emissivity (LSE) as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE) of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-30
    Description: The spatial extent of desertified vs. rehabilitated areas in the Mu Us Sandy Land, China, was explored. The area is characterized by complex landscape changes that were caused by different drivers, either natural or anthropogenic, interacting with each other, and resulting in multiple consequences. Two biophysical variables, NDVI, positively correlated with vegetation cover, and albedo, positively correlated with cover of exposed sands, were computed from a time series of merged NOAA-AVHRR and MODIS images (1981 to 2010). Generally, throughout the study period, NDVI increased and albedo decreased. Improved understanding of spatial and temporal dynamics of these environmental processes was achieved by using the Change Vector Analysis (CVA) technique applied to NDVI and albedo data extracted from four sets of consecutive Landsat images, several years apart. Changes were detected for each time step, as well as over the entire period (1978 to 2007). Four categories of land cover were created—vegetation, exposed sands, water bodies and wetlands. The CVA’s direction and magnitude enable detecting and quantifying finer changes compared to separate NDVI or albedo difference/ratio images and result in pixel-based maps of the change. Each of the four categories has a biophysical meaning that was validated in selected hot-spots, employing very high spatial resolution images (e.g., Ikonos). Selection of images, taking into account inter and intra annual variability of rainfall, enables differentiating between short-term conservancies (e.g., drought) and long-term alterations. NDVI and albedo, although comparable to tasseled cap’s brightness and greenness indices, have the advantage of being computed using reflectance values extracted from various Landsat platforms since the early 1970s. It is shown that, over the entire study period, the majority of the Mu Us Sandy Land area remained unchanged. Part of the area (6%), mainly in the east, was under human-induced rehabilitation processes, in terms of increasing vegetation cover. In other areas (5.1%), bare sands were found to expand to the central-north and the southwest of the area.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-29
    Description: Drought events cause changes in ecosystem function and structure by reducing the shrub abundance and expanding the biological soil crusts (biocrusts). This change increases the leakage of nutrient resources and water into the river streams in semi-arid areas. A common management solution for decreasing this loss of resources is to create a runoff-harvesting system (RHS). The objective of the current research is to apply geo-information techniques, including remote sensing and geographic information systems (GIS), on the watershed scale, to monitor and analyze the spatial and temporal changes in response to drought of two source-sink systems, the natural shrubland and the human-made RHSs in the semi-arid area of the northern Negev Desert, Israel. This was done by evaluating the changes in soil, vegetation and landscape cover. The spatial changes were evaluated by three spectral indices: Normalized Difference Vegetation Index (NDVI), Crust Index (CI) and landscape classification change between 2003 and 2010. In addition, we examined the effects of environmental factors on NDVI, CI and their clustering after successive drought years. The results show that vegetation cover indicates a negative ∆NDVI change due to a reduction in the abundance of woody vegetation. On the other hand, the soil cover change data indicate a positive ∆CI change due to the expansion of the biocrusts. These two trends are evidence for degradation processes in terms of resource conservation and bio-production. A considerable part of the changed area (39%) represents transitions between redistribution processes of resources, such as water, sediments, nutrients and seeds, on the watershed scale. In the pre-drought period, resource redistribution mainly occurred on the slope scale, while in the post-drought period, resource redistribution occurred on the whole watershed scale. However, the RHS management is effective in reducing leakage, since these systems are located on the slopes where the magnitude of runoff pulses is low.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Invasive plant species (IPS) are the second biggest threat to biodiversity after habitat loss. Since the spatial extent of IPS is essential for managing the invaded ecosystem, the current study aims at identifying and mapping the aggressive IPS of Acacia salicina and Acacia saligna, to understand better the key factors influencing their distribution in the coastal plain of Israel. This goal was achieved by integrating airborne-derived hyperspectral imaging and multispectral earth observation for creating species distribution maps. Hyperspectral data, in conjunction with high spatial resolution species distribution maps, were used to train the multispectral images at the species level. We incorporated a series of statistical models to classify the IPS location and to recognize their distribution and density. We took advantage of the phenological flowering stages of Acacia trees, as obtained by the multispectral images, for the support vector machine classification procedure. The classification yielded an overall Kappa coefficient accuracy of 0.89. We studied the effect of various environmental and human factors on IPS density by using a random forest machine learning model, to understand the mechanisms underlying successful invasions, and to assess where IPS have a higher likelihood of occurring. This algorithm revealed that the high density of Acacia most closely related to elevation, temperature pattern, and distances from rivers, settlements, and roads. Our results demonstrate how the integration of remote-sensing data with different data sources can assist in determining IPS proliferation and provide detailed geographic information for conservation and management efforts to prevent their future spread.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...