ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-22
    Description: Five late Pleistocene lava domes with a combined eruptive volume of ~40 km 3 distributed over an area of ~2000 km 2 represent the waning stages of the 10–1 Ma ignimbrite flare-up in the Altiplano Puna Volcanic Complex (APVC) of the Central Andes. Zircon crystal face (on unsectioned rims) and interior (on sectioned crystals) ages (U-Th and U-Pb, respectively) for a total of 252 crystals indicate remarkably consistent zircon crystallization histories: the youngest zircon surface ages (ca. 104–83 ka) are near 40 Ar/ 39 Ar eruption ages from sanidine and biotite (ca. 120–87 ka), but a significant population of surface ages predates eruption, ranging to secular equilibrium (with U-Pb interior ages to 3.5 Ma). The essentially continuous zircon crystallization history implies protracted magma presence, which agrees with temporally invariant Ti-in-zircon model temperatures, backed by the homogeneity of indirectly temperature-dependent compositional parameters. Zircon age spectra modeled using a finite-difference thermal and mass-balance model for open-system magma evolution indicate protracted zircon production in the magma reservoirs that require time-integrated recharge rates of ~1 x 10 –3 km 3 /yr, corresponding to high intrusive to extrusive ratios of 75: 1. This rate is below the ~5 x 10 –3 km 3 /yr threshold proposed in the literature for incubating the supereruptions defining the flare-up. When accounting for the shorter durations of high versus low recharge episodes over the ~10 m.y. lifetime of the APVC flare-up, the contributions to composite batholith formation in the shallow crust of the APVC remained broadly constant during peaks and lulls in eruptive activity. This connotes that eruptive fluxes are a poor measure for intrusive fluxes. A corollary of this interpretation is that commonly applied intrusive to extrusive ratios will severely underestimate pluton formation rates during periods of low eruptive flux.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-29
    Description: Zircons from 15 crystal-rich monotonous intermediate ignimbrites and 1 crystal-poor rhyolite ignimbrite erupted during the 11–1 Ma Altiplano-Puna Volcanic Complex (APVC) ignimbrite flare-up record multiscale episodicity in the magmatic history of the shallowest levels (5–10 km beneath the surface) of the Altiplano-Puna Magma Body (APMB). This record reveals the construction of a subvolcanic batholith and its magmatic and eruptive tempo. More than 750 U-Pb ages of zircon rims and interiors of polished grains determined by secondary ion mass spectrometry define complex age spectra for each ignimbrite with a dominant peak of autocrysts and subsidiary antecryst peaks. Xenocrysts are rare. Weighted averages obtained by pooling the youngest analytically indistinguishable zircon ages mostly correspond to the dominant crystallization ages for zircons in the magma. These magmatic ages are consistent with eruptive stratigraphy, and fall into four groups defining distinct pulses (from older to younger, pulses 1 through 4) of magmatism that correlate with eruptive pulses, but indicate that magmatic construction in each pulse initiated at least 1 m.y. before eruptions began. Magmatism was initially distributed diffusely on the eastern and western flanks of the APVC, but spread out over much of the APVC as activity waxed before focusing in the central part during the peak of the flare-up. Each pulse consists of spatially distinct but temporally sequenced subpulses of magma that represent the construction of pre-eruptive magma reservoirs. Three nested calderas were the main eruptive loci during the peak of the flare-up from ca. 6 to 2.5 Ma. These show broadly synchronous magmatic development but some discordance in their later eruptive histories. These relations are interpreted to indicate that eruptive tempo is controlled locally from the top down, while magmatic tempo is a more systemic, deeper, bottom-up feature. Synchroneity in magmatic history at distinct upper crustal magmatic foci implicates a shared connection deeper within the APMB. Each ignimbrite records the development of a discrete magma. Zircon age distributions of individual ignimbrites become more complex with time, reflecting the carryover of antecrysts in successively younger magmas and attesting to upper crustal assimilation in the APVC. Although present, xenocrysts are rare, suggesting that inheritance is limited. This is attributed to basement assimilation under zircon-undersaturated conditions deeper in the APMB than the pre-eruptive levels, where antecrysts were incorporated in zircon-saturated conditions. Magmatic ages for individual ignimbrites are older than the 40 Ar/ 39 Ar eruption ages. This difference is interpreted as the average minimum Zr-saturated melt-present lifetime for APVC magmas, the magmatic duration or age. The average age of ca. 0.4 Ma indicates that thermochemical conditions for zircon saturation were maintained for several hundreds of thousands of years prior to eruption of APVC magmas. This is consistent with a narrow range of zircon saturation temperatures of 730–815 °C that record upper crustal conditions and Zr/Hf, Th/U, Eu/Eu*, and Ti that reveal protracted magma differentiation under secular cooling rates an order of magnitude slower than typical pluton cooling rates. In concert, these data all suggest that the pre-eruptive magma reservoirs were perched in a thermally and chemically buffered state during their long pre-eruptive lifetimes. Trace element variations suggest subtle differences in crystallinity, melt fraction, and melt composition within different zones of individual magma reservoirs. Significant volumes of plutonic rocks associated with ignimbrites are supported by geophysical data, the limited compositional range over 10 m.y., the thermal inertia of the magmatic systems, and the evidence of resurgent magmatism and uplift at the calderas and eruptive centers, the distribution of which defines a composite, episodically constructed subvolcanic batholith. The multiscale episodicity revealed by the zircon U-Pb ages of the APVC flare-up can be interpreted in the context of continental arc magmatic systems in general. The APVC ignimbrite flare-up as a whole is a secondary pulse of ~10 m.y., with magmatic pulses 1 through 4 reflecting tertiary pulses of ~2 m.y., and the individual ignimbrite zircon spectra defining quaternary pulses of 〈1 m.y. This hierarchy of pulses is thought to reflect how a magmatic front, driven by the primary mantle power input, propagates through the crust with individual magmatic events occurring over sequentially smaller spatial and faster temporal scales in the upper crust of the Central Andes from ~30 km to the surface.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-04
    Description: Author(s): S. Lebernegg, M. Schmitt, A. A. Tsirlin, O. Janson, and H. Rosner Periodic and cluster density functional theory (DFT) calculations, including DFT+ U and hybrid functionals, are applied to study magnetostructural correlations in spin-1/2 frustrated chain compounds Cu X 2 : CuCl 2 , CuBr 2 , and a fictitious chain structure of CuF 2 . The nearest-neighbor and second-neighbor... [Phys. Rev. B 87, 155111] Published Wed Apr 03, 2013
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-22
    Description: Author(s): A. Dijon, E. Clément, G. de France, P. Van Isacker, J. Ljungvall, A. Görgen, A. Obertelli, W. Korten, A. Dewald, A. Gadea, L. Gaudefroy, M. Hackstein, D. Mengoni, Th. Pissulla, F. Recchia, M. Rejmund, W. Rother, E. Sahin, C. Schmitt, A. Shrivastava, J. J. Valiente-Dobón, K. O. Zell, and M. Zielińska Lifetimes of the 9/2 1 - and 3/2 1 - states in 63 Co and the 9/2 1 - state in 65 Co were measured using the recoil distance Doppler shift and the differential decay curve methods. The nuclei were populated by multinucleon transfer reactions in inverse kinematics. γ rays were measured with the EXOGAM Ge arra... [Phys. Rev. C 83, 064321] Published Tue Jun 21, 2011
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-03
    Description: The 1.85 Ga Belomorian Belt, Karelia, Russia, hosts ultralow 18 O and D (as low as –27.3 and –235 standard mean ocean water [SMOW], respectively), high-Al gneisses and amphibolites that we attribute to the Paleoproterozoic "Slushball Earth" glaciation. They now occur in at least 11 localities spanning 450 km. To constrain distribution of 18 O-depleted rocks, we performed detailed field mapping in Khitostrov, where 18 O values are the lowest. Using 430 new and previously published laser fluorination isotope analyses, we show that the elongated, concentrically zoned area of 18 O depletion is greater than 6 x 2 km in areal extent, ~10 times larger than previously thought. Relationships between 17 O versus 18 O strictly adhere to the equilibrium terrestrial mass-dependent fractionation with a slope of 0.527. We also report the results of ion microprobe U-Pb geochronology of zircons coupled with co-registered oxygen isotope spot analyses for mafic intrusions and host gneisses in six localities. The 2.9–2.7 Ga gneiss zircon cores are normal in 18 O (5–7). They show truncated oscillatory cathodoluminescence (CL) patterns and rounded shape indicative of original igneous crystallization with subsequent detrital overprinting. A younger 2.6–2.55 Ga metamorphic zircon domain with normal 18 O, low Th/U, dark cathodoluminescence, and also with rounded crystal morphology is commonly preserved. Cores are surrounded by ubiquitous rims highly depleted in 18 O (re-)crystallized with Svecofennian (1.85–1.89 Ga) ages. Rims are interpreted as metamorphic due to bright and uniform CL and Th/U 〈0.05. Mafic intrusions preserve few igneous zircon crystals between ca. 2.23 and 2.4 Ga in age, but neoblastic zircon in these intrusions originated mostly during 1.85 Ga Svecofennian metamorphism. The 18 O-age relationship for metamorphic rims in zircon and corundum grains suggests that 18 O values of fluids were subtly increasing with time during metamorphism. Large metamorphic corundum grains have ~3 intracrystalline 18 O isotope zonation from –24 to –21, which likely developed during interaction with metamorphic fluids. The Zr-in-rutile geothermometer temperatures are in the range of 760 to 720 °C, in accordance with mineral assemblages and amphibolite metamorphic grade. High and irregular rare-earth element (REE) abundance in cores and rims of many zircons correlates with high phosphorus content and is explained by nanometer-scale xenotime and monazite inclusions, likely in metamict zones during 1.85 Ga Svecofennian metamorphism. A survey of oxygen isotopes in ultrahigh-pressure diamond and coesite-bearing metamorphic terrains around the world reveals normal to high- 18 O values, suggesting that the low 18 O in metamorphic rocks of Dabie Shan, Kokchetav, and in Karelia, are genetically unrelated to metamorphism. We discuss alternative ways to achieve extreme 18 O depletion by kinetic, Rayleigh, and thermal diffusion processes, and by metamorphism. We prefer an interpretation where the low- 18 O and high-Al signature of the rocks predates metamorphism, and is caused by shallow hydrothermal alteration and partial dissolution of the protolith surrounding shallow mafic intrusions by glacial meltwaters during pan-global Paleoproterozoic "Slushball Earth" glaciations between ca. 2.4 and ca. 2.23 Ga.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-27
    Description: The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ~1800 km 3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18 O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low- 18 O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206 Pb/ 238 U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40 Ar/ 39 Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (10 3 –10 4 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the reservoir configurations inferred from seismic data at active supervolcanoes. The connection of magma batches vertically distributed over several kilometers in the upper crust would cause a substantial increase of buoyancy overpressure, providing an eruption trigger mechanism that is the direct consequence of the reservoir assembly process.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-19
    Description: Author(s): D. E. McNally, J. W. Simonson, K. W. Post, Z. P. Yin, M. Pezzoli, G. J. Smith, V. Leyva, C. Marques, L. DeBeer-Schmitt, A. I. Kolesnikov, Y. Zhao, J. W. Lynn, D. N. Basov, G. Kotliar, and M. C. Aronson We present high temperature inelastic neutron scattering and magnetic susceptibility measurements of the antiferromagnetic insulator LaMnPO that are consistent with the presence of two-dimensional magnetic correlations up to a temperature Tmax≈700K≫TN=375 K, the Néel temperature. Optical transmissio... [Phys. Rev. B 90, 180403] Published Tue Nov 18, 2014
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-05-03
    Description: A critical factor in understanding the development of active continental margins is knowledge of the crustal basement on which magmatic arcs are built. This study reports results from a whole-rock geochemical and zircon U-Pb geochronological study of a suite of crustal xenoliths from the Bolivian Altiplano, Central Andes, that provide new insight into the evolution and composition of the continental basement beneath the region. The xenoliths are hosted in Pliocene–Pleistocene trachyandesitic to dacitic lavas that erupted from monogenetic volcanic centers in the Andean backarc region and comprise both igneous and metamorphic lithologies, including diorites, microgranites, gneisses, garnet–mica schists, granulites, quartzites, and dacites. The xenolith suite exhibits significant Sr-isotopic heterogeneity, with values extending from 0.7105 to 0.7368. Pb isotopic signatures reflect the crustal domains previously constrained from scattered exposures of basement rocks throughout the region. Ion microprobe U-Pb dating of cores and rims from zircon separates from two of the sampled xenoliths reveals predominant early Phanerozoic age peaks (ca. 500 Ma; population 1), late Mesoproterozoic age peaks (1.0–1.2 Ga; population 2), and Paleoproterozoic age peaks (1.7–1.9 Ga; population 3). Populations 1 and 2 are well documented throughout the Andes and correspond to periods of supercontinent formation (e.g., Rodinia at ca. 1.0 Ga) and breakup. Population 3, which is poorly represented in the zircon record of the Andes as a whole, may record geological events during the construction of the Paleoproterozoic Amazonian Craton. The presence of the three age peaks in the detrital zircon population record of a single crustal xenolith demonstrates the important role of crustal recycling in the construction of the modern-day Andean margin. The lithological character of the xenoliths and their detrital zircon ages are inconsistent with current understanding of the eastern extent of the Arequipa-Antofalla basement block beneath the Bolivian Altiplano and instead indicate that it terminates further to the west than previously assumed.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-11-03
    Description: Author(s): J. A. Krieger, Cui-Zu Chang, M.-A. Husanu, D. Sostina, A. Ernst, M. M. Otrokov, T. Prokscha, T. Schmitt, A. Suter, M. G. Vergniory, E. V. Chulkov, J. S. Moodera, V. N. Strocov, and Z. Salman The quantum anomalous Hall (QAH) effect involves spin-polarized, dissipation-free chiral edge state transport in the absence of an external magnetic field. This effect has been realized in magnetically doped topological insulators, such as Cr- and V-doped (Bi,Sb) 2 Te 3 thin films. To date, the observation of the QAH effect in these materials is limited to millikelvin temperatures deep below their ferromagnetic transition temperature. In this report, the authors provide complementary magnetic and electronic study of such systems using muon spin and photoemission spectroscopies. They show that the topological insulator layers become fully ferromagnetic only at much lower temperature than the onset temperature for ferromagnetism and demonstrate the presence of a magnetic impurity band with a finite density of states at the Fermi level. Both properties may be responsible for the low temperature needed for observing the QAH effect. [Phys. Rev. B 96, 184402] Published Thu Nov 02, 2017
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-13
    Description: Author(s): G. Fabbris, D. Meyers, L. Xu, V. M. Katukuri, L. Hozoi, X. Liu, Z.-Y. Chen, J. Okamoto, T. Schmitt, A. Uldry, B. Delley, G. D. Gu, D. Prabhakaran, A. T. Boothroyd, J. van den Brink, D. J. Huang, and M. P. M. Dean We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S = 1 systems by probing the Ni L 3 edge of La 2 − x Sr x NiO 4 ( x = 0 , 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and mu… [Phys. Rev. Lett. 118, 156402] Published Wed Apr 12, 2017
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...