ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (19)
  • 1
    Publication Date: 2018-09-01
    Description: This study investigated atmospheric water cycles over several time scales to understand the maintenance processes that control heavy precipitation over the islands of the Maritime Continent. Large island regions can be divided into land, coastal, and ocean areas based on the characteristics of both the hydrologic cycle and the diurnal variation in precipitation. Within the Maritime Continent, the major islands of Borneo and New Guinea exhibit different hydrologic cycles. Large-scale circulation variations, such as the seasonal cycle and the Madden–Julian oscillation, have a lesser effect on the hydrologic cycle over Borneo than over New Guinea because the effects depend on their shapes and locations. The impact of diurnal variations on both regional-scale circulation and water exchange between land and coastal regions is pronounced over both islands. The recycling ratio of precipitation, which can be related to stronger diurnal variation in the atmospheric water cycle that results from enhanced evapotranspiration over tropical rain forests, is higher over Borneo than over New Guinea.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-01
    Description: This study evaluates the capability of coupled global climate models (CGCMs) in simulating the prime examples of the forced response (global monsoon) and internal feedback process (El Niño). Emphases are also placed on the fidelity of the year-to-year variability of global monsoon precipitation that is coordinated by the interannual sea surface temperature (SST) fluctuation over the tropics. The latest version of the Model for Interdisciplinary Research on Climate 5 (MIROC5) with advanced physical schemes is compared with the two previous versions (MIROC3.2, high- and medium-resolution versions) and with the 20 CGCMs participating in the third phase of the Coupled Model Intercomparison Project (CMIP3). The climatological annual mean and cycles of precipitation and 850-hPa winds, the key components to demarcate the global monsoon domain, are reproduced better in MIROC5 than in MIROC3 versions. As a consequence, the former considerably outperforms the latter and is generally superior to the CMIP3 CGCMs in replicating the intensity and domain of global monsoon precipitation and circulations. These results highlight the importance of the improved physical parameterization in a model. Analyses of the monthly Niño-3 index suggest that the amplitude and periodicity of El Niño are simulated better in MIROC5 than in the MIROC3 versions. Yet the reality of nonlinear ENSO dynamics measured indirectly by the SST asymmetricity over the equatorial Pacific is unsatisfactory in the MIROC family as well as in the majority of the CMIP3 models. The maximum covariance analysis shows that a significant fraction of the interannual global monsoon rainfall variability is in concert with El Niño. The multimodel results reveal that such coupling is robust across the current CGCMs. More importantly, the fidelity of the global monsoon precipitation significantly relies on the realism of tropical SST. Comparison among the MIROC models suggests that improved El Niño is likely attributable to the more realistic Bjerknes feedback loop, which results from the intensified convective activity over the equatorial central Pacific Ocean.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-11
    Description: The atmospheric circulation patterns that were responsible for the heavy flooding that occurred in Thailand in 2011 are examined. This paper also investigates the interannual variation in precipitation over Indochina over a 33-yr period from 1979–2011, focusing on the role of westward-propagating tropical cyclones (TCs) over the Asian monsoon region. Cyclonic anomalies and more westward-propagating TCs than expected from the climatology of the area were observed in 2011 along the monsoon trough from the northern Indian subcontinent, the Bay of Bengal, Indochina, and the western North Pacific, which contributed significantly to the 2011 Thai flood. The strength of monsoon westerlies was normal, which implies that the monsoon westerly was not responsible for the seasonal heavy rainfall in 2011. Similar results were also obtained from the 33-yr statistical analysis. The 5-month total precipitation over Indochina covaried interannually with that along the monsoon trough. In addition, above-normal precipitation over Indochina was observed when enhanced cyclonic circulation with more westward-propagating TCs along the monsoon trough was observed. Notably, the above-normal precipitation was not due to the enhanced monsoon westerly over Indochina. Therefore, the 2011 Thai flood was caused by the typical atmospheric circulation pattern for an above-normal precipitation year. It is noteworthy that the effect of sea surface temperature (SST) forcing over the western North Pacific and the Niño-3.4 region on total precipitation during the summer rainy season over Indochina was unclear over the 33-yr period.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-04-15
    Description: This study investigated the climatological pentad mean annual cycle of rainfall in Thailand and the associated atmospheric circulation fields. The data used included two different data of rainfall: rain gauge data for Thailand from the Thai Meteorological Department and satellite-derived rainfall data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP). Climatological mean pentad values of rainfall taken over 50 yr clearly show a distinct climatological monsoon break (CMB) occurring over Thailand in late June. The occurrence of the CMB coincides with a drastic change of large-scale monsoon circulation in the seasonal march. The CMB is a significant singularity in the seasonal march of the Southeast Asia monsoon, which divides the rainy season into the early monsoon and the later monsoon over the Indochina Peninsula. A quasi-stationary ridge dynamically induced by the north–south-oriented mountain range in Indochina is likely to cause the CMB. The formation of the strong ridge over the mountain ranges of Indochina is preceded by a sudden enhancement (northward expansion) of the upstream monsoon westerlies along a latitudinal band between 15° and 20°N in late June. The CMB also has an impact downstream. The orographically induced stationary Rossby waves enhance the cyclonic circulation to the lee of Indochina, and over the South China Sea. The enhancement of cyclonic circulation may be responsible for the summer monsoon rains peaking in late June over the South China Sea and the western North Pacific, and in the baiu front.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-03-15
    Description: To clarify the interannual variability of winter surface air temperature (SAT) over Asia and the surrounding oceans, the authors applied principal component analysis to normalized monthly SATs. The first mode represents the Asian north–south dipole pattern with a node over the Tibetan Plateau. This component has close relationships to the Arctic Oscillation and cold surge variability around Southeast Asia, showing decadal oscillation with signal changes in 1988 and 1997. The second mode is the inner-Asian mode with a center to the north of the Tibetan Plateau. This component connects to fluctuations of not only the western Siberian high but also the Icelandic low, which is associated with the pattern of the polar vortex over Eurasia. A recent warming trend and possible relationship to solar activity are also shown. The modes of Asian SAT variability associated with ENSO are extracted as the north–south dipole mode over the tropical western Pacific and Japan (the third mode) and Silk Road mode (the fourth mode). The two independent modes appear to be caused by different sea surface temperature (SST) anomalies over the western Pacific and Indian Ocean and their associated atmospheric Rossby wave responses: the atmospheric wave trains over both the north and south of the Tibetan Plateau in the third mode, and the atmospheric wave train that propagates toward the Silk Road via Greenland in the fourth mode.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-04-15
    Description: This study documents the detailed characteristics of the tropical intraseasonal variability (TISV) in the MRI-20km60L AGCM that uses a variant of the Arakawa–Schubert cumulus parameterization. Mean states, power spectra, propagation features, leading EOF modes, horizontal and vertical structures, and seasonality associated with the TISV are analyzed. Results show that the model reproduces the mean states in winds realistically and in convection comparable to that of the observations. However, the simulated TISV is less realistic. It shows low amplitudes in convection and low-level winds in the 30–60-day band. Filtered anomalies have standing structures. Power spectra and lag correlation of the signals do not propagate dominantly either in the eastward direction during boreal winter or in the northward direction during boreal summer. A combined EOF (CEOF) analysis shows that winds and convection have a loose coupling that cannot sustain the simulated TISV as realistically as that observed. In the composited mature phase of the simulated MJO, the low-level convergence does not lead convection clearly so that the moisture anomalies do not tilt westward in the vertical, indicating that the low-level convergence does not favor the eastward propagation. The less realistic TISV suggests that the representation of cumulus convection needs to be improved in this model.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-11-01
    Description: Early summer climate in the western North Pacific is largely represented by the baiu phenomenon. The meridional fluctuations of the baiu front on interannual time scales and the associated large-scale circulations are examined using the empirical orthogonal function (EOF) analysis and composite or correlation analyses based on the EOF time coefficients. The first EOF mode indicates a 5- or 6-yr low-frequency fluctuation (LF mode) appearing south of 35°N. The development is concurrent with horseshoe sea surface temperature anomalies (SSTAs) in the entire tropical Pacific that are associated with the El Niño–Southern Oscillation (ENSO). SSTAs in the western North Pacific control the anomalous southward expansion of the baiu front through a modification of the convection at around 20°–35°N. The LF mode is negatively correlated with the south-southeast Asian summer monsoon. The second EOF mode is characterized by a meridional seesawlike fluctuation with a node at around 28°N and a time scale of biennial oscillation (BO mode). The horseshoe SSTAs again control the anomalous meridional circulations, but with a different spatial phase through a convection off the Philippines. The spatial phase difference between the two horseshoe patterns is about 90° in both the zonal and meridional directions. The BO mode is negatively correlated with the tropical western North Pacific monsoon. SSTAs associated with the BO mode tend to be confined to the tropical western Pacific, while the signals of the LF mode extend rather broadly in the tropical Pacific–Indian Ocean sector, suggesting that the tropical BO is an aborted ENSO in the tropical central–western Pacific. The spatial phase of horseshoe SSTAs adjusts the interannual variability of the meridional fluctuation of the baiu front in the western North Pacific.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-04-01
    Description: Five years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data were used to investigate the time and space characteristics of the diurnal cycle of rainfall over and around Borneo, an island in the Maritime Continent. The diurnal cycle shows a systematic modulation that is associated with intraseasonal variability in the large-scale circulation pattern, with regimes associated with low-level easterlies or westerlies over the island. The lower-tropospheric westerly (easterly) components correspond to periods of active (inactive) convection over the island that are associated with the passage of intraseasonal atmospheric disturbances related to the Madden–Julian oscillation. A striking feature is that rainfall activity propagates to the leeward side of the island between midnight and morning. The inferred phase speed of the propagation is about 3 m s−1 in the easterly regime and 7 m s−1 in the westerly regime. Propagation occurs over the entire island, causing a leeward enhancement of rainfall. The vertical structure of the developed convection/rainfall system differs remarkably between the two regimes. In the easterly regime, stratiform rains are widespread over the island at midnight, whereas in the westerly regime, local convective rainfall dominates. Over offshore regions, convective rainfall initially dominates then gradually decreases in both regimes, while the storms develop into deeper convective systems in the easterly regime. Aside from leeward rainfall propagation, shallow storms develop over the South China Sea region during the westerly regime, resulting in heavy precipitation from midnight through morning.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-01
    Description: This study investigates spatiotemporal characteristics of the diurnal cycle (DC) of rainfall over Sarawak in northwest Borneo Island, associated with large-scale intraseasonal disturbances represented by the Madden–Julian oscillation (MJO). This is accomplished using a dense hourly rain gauge network and satellite data. The spatial pattern of the DC is classified into two major groups, coastal and interior regions, based on remarkable differences in rainfall peak times and amplitudes. Amplitudes of the DC and daily rainfall amount increase in active MJO phases at all sites, but the MJO has a stronger effect in the coastal region than the interior region. This modulation of rainfall by the MJO disturbance is largely attributed to rainfall frequency in the interior region, but to both frequency and intensity of rainfall in the coastal region. The low-level westerly wind anomaly enhances convergence, the land–sea breeze, and a midnight rainfall peak in the coastal region during the active MJO phase. Analysis of moisture flux divergence and moist static instability suggests the different dynamics of this modulation of the DC between coastal and interior regions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-04-01
    Description: The climatology and long-term trends of low-cloud conditions over China were examined using the Extended Edited Cloud Report Archive data from 1971 to 1996. Linear regression analysis was applied to time series of clear-sky frequencies and low-cloud frequencies, and low-cloud amounts when present. Over the 26-yr study period, the clear-sky frequency increased over northern China. During summer, the frequency of cumuliform clouds decreased over almost all of China. A significant decrease characterized the trend in cumulonimbus (Cb) frequency; however, the Cb cloud amount when present increased over the Yangtze River basin and southern China. Increasing trends in stratocumulus (Sc) cloud amount when present were also observed over much of China.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...