ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (5)
Collection
Publisher
Years
  • 1
    Publication Date: 2008-08-01
    Description: In this study, the GPS radio occultation (RO) data from the Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C) missions are assimilated. An updated version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) four-dimensional variational data assimilation system (4DVAR) is used to assess the impact of the GPS RO data on analyses and short-range forecasts over the Antarctic. The study was performed during the period of intense cyclonic activity in the Ross Sea, 9–19 December 2001. On average 66 GPS RO soundings were assimilated daily. For the assimilation over a single 12-h period, the impact of GPS RO data was only marginally positive or near neutral, and it varied markedly from one 12-h period to another. The large case-to-case variation was attributed to the low number of GPS RO soundings and a strong dependency of forecast impact on the location of the soundings relative to the rapidly developing cyclone. Despite the moderate general impact, noticeable reduction of temperature error in the upper troposphere and lower stratosphere was found, which demonstrates the value of GPS RO data in better characterizing the tropopause. Significant error reduction was also noted in geopotential height and wind fields in the stratosphere. Those improvements indicate that early detection of the upper-level precursors for storm development is a potential benefit of GPS RO data. When the assimilation period was extended to 48 h, a considerable positive impact of GPS RO data was found. All parameters that were investigated (i.e., temperature, pressure, and specific humidity) showed the positive impact throughout the entire model atmosphere for forecasts extending up to 5 days. The impact increased in proportion to the length of the assimilation period. Although the differences in the analyses as a result of GPS RO assimilation were relatively small initially, the subtle change and subsequent nonlinear growth led to noticeable forecast improvements at longer ranges. Consequently, the positive impact of GPS RO data was more evident in longer-range (e.g., greater than 2 days) forecasts. A correlation coefficient is introduced to quantify the linear relationship between the analysis errors without GPS RO assimilation and the analysis increments induced by GPS RO assimilation. This measure shows that the growth of GPS RO–induced modifications over time is related to the prominent error reduction observed in GPS RO experiments. The measure may also be useful for understanding how cycling analysis accumulates the positive impact of GPS RO data for an extended period of assimilation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-01
    Description: The authors have discovered two sizeable biases in the Weather Research and Forecasting (WRF) model: a negative bias in geopotential and a warm bias in temperature, appearing both in the initial condition and the forecast. The biases increase with height and thus manifest themselves at the upper part of the model domain. Both biases stem from a common root, which is that vertical structures of specific volume and potential temperature are convex functions. The geopotential bias is caused by the particular discrete hydrostatic equation used in WRF and is proportional to the square of the thickness of model layers. For the vertical levels used in this study, the bias far exceeds the gross 1-day forecast bias combining all other sources. The bias is fixed by revising the discrete hydrostatic equation. WRF interpolates potential temperature from the grids of an external dataset to the WRF grids in generating the initial condition. Associated with the Exner function, this leads to the marked bias in temperature. By interpolating temperature to the WRF grids and then computing potential temperature, the bias is removed. The bias corrections developed in this study are expected to reduce the disparity between the forecast and observations, and eventually to improve the quality of analysis and forecast in the subsequent data assimilation. The bias corrections might be especially beneficial to assimilating height-based observations (e.g., radio occultation data).
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-02-01
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-01
    Description: This study uses the new satellite-based Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission to retrieve tropospheric profiles of temperature and moisture over the data-sparse eastern Pacific Ocean. The COSMIC retrievals, which employ a global positioning system radio occultation technique combined with “first-guess” information from numerical weather prediction model analyses, are evaluated through the diagnosis of an intense atmospheric river (AR; i.e., a narrow plume of strong water vapor flux) that devastated the Pacific Northwest with flooding rains in early November 2006. A detailed analysis of this AR is presented first using conventional datasets and highlights the fact that ARs are critical contributors to West Coast extreme precipitation and flooding events. Then, the COSMIC evaluation is provided. Offshore composite COSMIC soundings north of, within, and south of this AR exhibited vertical structures that are meteorologically consistent with satellite imagery and global reanalysis fields of this case and with earlier composite dropsonde results from other landfalling ARs. Also, a curtain of 12 offshore COSMIC soundings through the AR yielded cross-sectional thermodynamic and moisture structures that were similarly consistent, including details comparable to earlier aircraft-based dropsonde analyses. The results show that the new COSMIC retrievals, which are global (currently yielding ∼2000 soundings per day), provide high-resolution vertical-profile information beyond that found in the numerical model first-guess fields and can help monitor key lower-tropospheric mesoscale phenomena in data-sparse regions. Hence, COSMIC will likely support a wide array of applications, from physical process studies to data assimilation, numerical weather prediction, and climate research.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-24
    Description: The impact of global positioning system (GPS) radio occultation (RO) data on an intense synoptic-scale storm that occurred over the Southern Ocean in December 2007 is evaluated, and a synoptic explanation of the assessed impact is offered. The impact is assessed by using the three-dimensional variational data assimilation scheme (3DVAR) of the Weather Research and Forecasting (WRF) Model Data Assimilation system (WRFDA), and by comparing two experiments: one with and the other without assimilating the refractivity data from four different RO missions. Verifications indicate significant positive impacts of the RO data in various measures and parameters as well as in the track and intensity of the Antarctic cyclone. The analysis of the atmospheric processes underlying the impact shows that the assimilation of the RO data yields substantial improvements in the large-scale circulations that in turn control the development of the Antarctic storm. For instance, the RO data enhanced the strength of a 500-hPa trough over the Southern Ocean and prevented the katabatic flow near the coast of East Antarctica from an overintensification. This greatly influenced two low pressure systems of a comparable intensity, which later merged together and evolved into the major storm. The dominance of one low over the other in the merger dramatically changed the track, intensity, and structure of the merged storm. The assimilation of GPS RO data swapped the dominant low, leading to a remarkable improvement in the subsequent storm’s prediction.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...