ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 1997-09-01
    Description: The global forecast system (GFS), which started its operation in 1988 at the Central Weather Bureau in Taiwan, has been upgraded to incorporate better numerical methods and more complete parameterization schemes. The second-generation GFS uses multivariate optimum interpolation analysis and incremental nonlinear normal-mode initialization to initialize the forecast model. The forecast model is a global primitive equation model with a resolution of 18 sigma levels in the vertical and 79 waves of triangular truncation in the horizontal. The forecast model includes a 1.5-order eddy mixing parameterization, a gravity wave drag parameterization, a shallow convection parameterization, a relaxed version of Arakawa–Schubert cumulus parameterization, grid-scale condensation calculation, and longwave and shortwave radiative transfer calculations with consideration of fractional clouds. The performance of the second-generation GFS is significantly better than the first-generation GFS. For two 3-month periods in winter 1995/96 and summer 1996, the second-generation GFS provided forecasters with 5-day forecasts where the averaged 500-mb height anomaly correlation coefficients for the Northern Hemisphere were greater than 0.6. Observational data available to the GFS are much less than those at other numerical weather prediction centers, especially in the Tropics and Southern Hemisphere. The GRID messages of 5° resolution, ECMWF 24-h forecast 500-mb height and 850- and 200-mb wind fields available once a day on the Global Telecommunications System are used as supplemental observations to increase the data coverage for the GFS data assimilation. The supplemental data improve the GFS performance both in the analysis and forecast.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...