ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2013-05-01
    Description: A submarine cable across the Florida Straits yields a time series of volume and temperature transports using previously determined calibrations, and here a calibration is defined for salinity transport using data not yet compared to the cable. Since 2001, 32 transects were collected with conductivity–temperature–depth (CTDs) sensors and lowered acoustic Doppler current profilers (LADCPs). Calibrations for volume and temperature transports using CTD/LADCP data are consistent with previous studies. A salinity calibration is obtained by regressing salinity transport against volume transport, where salinity transport is calculated relative to the basin-averaged salinity at 26°N (Sref = 35.156 psu). On average, the transect-derived salinity transport is 33.0 Sv psu (1 Sv ≡ 106 m3 s−1), has a standard deviation of 2.8 Sv psu, and has a 90th percentile range of 29.1–37.4 Sv psu. The cable-derived salinity transport has a root-mean-square error of 2.2 Sv psu compared to the CTD/LADCP transects. Inherent spatial fluctuations and their covariability in the Florida Straits are responsible for noise in the calibrations and for slight increases in accuracy from salinity to temperature to volume calibrations. Salinity fluctuations are strongest in middepth waters of intermediate salinity, where velocity is neither particularily fast nor variable. In contrast, temperature is highly stratified and warm near-surface waters coincide with fast and variable velocities. Temperature additionally exhibits seasonality near the surface, whereas no robust seasonality is found for salinity or velocity. Temperature and salinity transports are largely driven by volume transport, which in turn, because of a large average electrical conductivity, is closely related to the conductivity-weighted velocity that generates the cable-measured voltage.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-15
    Description: The first continuous estimates of freshwater flux across 26.5°N are calculated using observations from the RAPID–MOCHA–Western Boundary Time Series (WBTS) and Argo floats every 10 days between April 2004 and October 2012. The mean plus or minus the standard deviation of the freshwater flux (FW) is −1.17 ± 0.20 Sv (1 Sv ≡ 106 m3 s−1; negative flux is southward), implying a freshwater divergence of −0.37 ± 0.20 Sv between the Bering Strait and 26.5°N. This is in the sense of an input of 0.37 Sv of freshwater into the ocean, consistent with a region where precipitation dominates over evaporation. The sign and the variability of the freshwater divergence are dominated by the overturning component (−0.78 ± 0.21 Sv). The horizontal component of the freshwater divergence is smaller, associated with little variability and positive (0.35 ± 0.04 Sv). A linear relationship, describing 91% of the variance, exists between the strength of the meridional overturning circulation (MOC) and the freshwater flux (−0.37 − 0.047 Sv of FW per Sverdrups of MOC). The time series of the residual to this relationship shows a small (0.02 Sv in 8.5 yr) but detectable decrease in the freshwater flux (i.e., an increase in the southward freshwater flux) for a given MOC strength. Historical analyses of observations at 24.5°N are consistent with a more negative freshwater divergence from −0.03 to −0.37 Sv since 1974. This change is associated with an increased southward freshwater flux at this latitude due to an increase in the Florida Straits salinity (and therefore the northward salinity flux).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...